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ABSTRACT 

This paper presents a mixed multinomial logit-based discrete choice modelling framework to 

accommodate decision-makers’ errors in perceiving choice environment variables that do not vary 

across choice alternatives. An analysis is undertaken to evaluate two different ways of specifying 

errors in the choice environment variables in discrete choice models – (a) the additive specification 

and (b) the multiplicative specification. Between these two approaches, the multiplicative error 

specification is consistent with psychophysical theories of human perception of physical quantities 

in that the variability in perception tends to be greater for quantities of greater magnitude. Further, 

it is shown that models with an additive error specification run into parameter (un)identifiability 

problems if the analyst attempts to accommodate errors in several variables. In contrast, models 

with multiplicative errors in variables allow separate identification of stochasticity in as many 

variables as needed, as long as those variables have a significant influence on the choice outcome. 

The usefulness of the proposed framework with multiplicative errors is demonstrated 

through simulation experiments and an empirical application for analysing driver behaviour while 

considering drivers’ errors in perceiving traffic environment variables. The empirical analysis is 

carried out using space-time trajectories of vehicles from a heterogeneous, disorderly (HD) traffic 

stream in Chennai, India. Results suggest that the proposed model, with power lognormal 

distributed multiplicative errors in traffic environment variables, outperformed the typically used 

mixed logit models with random coefficients (uncorrelated and correlated) or error components. 

Further, allowing for perception errors in traffic environment variables was found to be more 

important than allowing unobserved heterogeneity in the drivers’ sensitivity to those variables. In 

addition, the empirical model offers interesting insights into the extent of variability due to 

perception errors in different traffic environment variables. 

 

Keywords: mixed logit, errors in variables, perception errors, parameter identification, driver 

behaviour, heterogeneous and disorderly traffic 
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1. INTRODUCTION  

Random utility maximization (RUM) based discrete choice models involve utility functions that 

are typically specified as functions of observed variables describing choice alternative attributes, 

decision-maker characteristics, and choice environment variables. In addition, the utility functions 

include random error terms to recognize differences between the systematic utility components 

characterized by the analyst and the utility perceived by the decision-maker. As discussed in 

Manski (1977), the random error terms include, for example, omitted attributes that have an 

influence on the decision-maker’s utility, unobserved taste variations, measurement errors in the 

variables included in systematic utility components, and other errors in the utility specification. In 

addition, even if the analyst had access to accurate measurements, the random error terms would 

include perception errors of the decision-makers.  

 Some of the above reasons for including random error terms, such as taste variations, may 

be addressed by treating the parameters of the systematic utility function as random. A large stream 

of literature exists on random coefficients in choice models (Cardell and Dunbar, 1980; McFadden 

and Train, 2000). However, several other reasons for stochasticity in utility functions, such as 

measurement and/or perception errors for variables included in the systematic utility functions, 

warrant the treatment of those variables as stochastic. For example, using aggregate, zone-to-zone 

measurements instead of point-to-point measurements (Train, 1978; Daly and Ortuzar, 1990) or 

assuming free-flow travel times can introduce errors in the travel time variables used to explain 

many travel choices. Spatial aggregation can introduce errors in spatial variables used in location 

choice models (Daly and Ortuzar, 1990; Hellerstein, 2005). In some situations, noisy data might 

be a reason for errors in variables (Steinmetz and Brownstone, 2005; Walker et al., 2010; Bhatta 

and Larsen, 2011). In another example, in models of driver behaviour in traffic streams, traffic 

environment variables such as space gaps and relative speeds are typically treated as deterministic. 

However, drivers’ perceptions of these variables might be different from the analysts’ 

measurements typically included as explanatory variables in the models. All these reasons warrant 

the need to accommodate uncertainty in the explanatory variables used in models of choice 

behaviour. 
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1.1. Choice Models with Errors in Variables (EIV) 

The literature on choice models with errors in variables (EIV) is relatively small compared to that 

on choice models with random parameters. As pointed out by McFadden (1984) and recently 

brought to attention by Díaz et al. (2015), the EIV issue poses important yet not fully resolved 

problems for choice modelling. This issue has received greater attention in the econometric 

literature, particularly in the form of EIV in linear regression models (Fuller, 2009; Greene, 2018) 

and to some extent in non-linear models (Wansbeek and Meijer, 2000; Carroll et al., 2006). As 

such, there is a consensus in the econometric literature on non-linear models that EIV can 

potentially result in biased parameter estimates (due to endogeneity) not only for the variables with 

errors but also for other variables in the model (Greene, 2018). This is because the endogeneity 

caused by EIV typically affects the estimation of all parameters in non-linear models (Wooldridge, 

2012). The issue of endogeneity arises when the EIV are correlated with one or more explanatory 

variables in the model. However, in RUM-based discrete choice models, even if the EIV are not 

correlated with the explanatory variables, ignoring EIV would lead to an inflation of variance of 

the kernel error terms, thereby causing bias toward zero for the parameter estimates (because 

parameter estimates in discrete choice models are confounded by the scale of the kernel error 

terms). Several studies in the choice modelling literature discuss and/or demonstrate that ignoring 

stochasticity due to EIV, when present, can potentially lead to biased estimation and distorted 

inferences (Yatchew and Griliches, 1985; Hellerstein, 2005; Carroll et al., 2006; Bhatta and 

Larsen, 2011; Díaz et al., 2015), incorrect marginal rates of substitution (Ortúzar and Ivelic, 1987; 

Bhatta and Larsen, 2011), and erroneous forecasts (Train, 1978, 2009). 

To address the EIV problem in choice models, a stream of studies in the biometrics field 

(for example, Carroll et al., 1984; Stefanski and Carroll, 1985) propose bias-adjusted estimators 

for binary choice models and a few studies in the economics field (Kao and Schnell, 1987) do the 

same for multinomial logit models. In another study, Steinmetz and Brownstone (2005) use an 

imputation method (Rubin, 1987) to correct measurement errors in network data, such as travel 

times, when accurate measurements are available only for a sub-sample of observations.   

 In another widely used approach to address the EIV problem, the variables under 

consideration are treated as latent. Available measurements of the variables are used to inform the 

distribution of the latent variables through a measurement equation. The latent variable, in turn, 
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enters the utility function of the choice model. The measurement equation and the choice model 

are estimated jointly in an integrated choice and latent variable (ICLV) framework (Bolduc and 

Alvarez-Daziano, 2010; Walker et al., 2010; Sanko et al., 2014; Varotto et al., 2017; Biswas et al., 

2019). In most such ICLV studies, separate structural equations are specified for the latent 

variables under consideration, where the latent variables are expressed as functions of exogeneous 

variables. For example, income may be specified as a function of sociodemographic characteristics 

(Sanko et al., 2014), and route-level travel time may be specified as a function of route structure 

attributes. Doing so, however, is not always possible, especially when it is not easy to find 

exogenous variables to explain the latent variable. In such situations, the latent variable is 

expressed as a sum of available measurements and a random error term to recognize the error in 

the measurement. This approach is used to account for EIV in a multinomial choice model by 

Hellerstein (2005) and Díaz et al. (2015). In both papers, the authors deal with errors in alternative 

attributes – location-specific attributes in a location choice model by Hellerstein (2005) and travel 

time variables in a mode choice model by Díaz et al. (2015). Furthermore, in both papers, the EIV 

specification is converted into an error components specification where the EIV in all variables of 

interest are combined into one error component for each choice alternative. The resulting model, 

assuming IID Gumbel kernel error terms, is the familiar mixed multinomial logit model with a 

heteroscedastic structure. A downside of this approach is that one cannot separately estimate error 

components for each explanatory variable with errors because, for each choice alternative, only a 

single variance term can be estimated (while normalizing the variance for one alternative). Besides, 

it is difficult to estimate separate error component parameters for each choice alternative in 

situations with large choice sets.  

1.2. Gaps in Literature 

There are three prominent gaps in most of the above-discussed literature on choice models with 

EIV. First, most of the above-discussed studies focus on errors in choice alternative attributes that 

vary across alternatives, such as travel times in mode choice or route choice models. Few studies 

focus on errors in choice environment variables that do not vary across choice alternatives. 

However, several choice environment variables that do not vary across choice alternatives, such 

as drivers’ perceptions of their traffic environment in driver behaviour models, can potentially be 

associated with errors. And there is one important difference between the errors in these two types 

of variables. Errors in choice environment variables that do not vary across alternatives must be 
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represented by the same probabilistic distribution across all choice alternatives. This is because 

the decision-makers’ errors in perceiving a choice environment variable do not vary across choice 

alternatives. On the other hand, the distributions for errors in alternative-specific attributes are 

typically different for different choice alternatives. For example, variability in travel times of bus 

transit can potentially be higher than that of metro transit. Therefore, the specification of errors in 

choice environment variables cannot be the same as that for alternative-specific attributes.  

Second, most of the above-discussed literature is in the context of accommodating 

measurement errors. However, in several situations, the decision-maker’s errors in perceptions of 

physical quantities – such as time duration, distance, and speed – might be more prevalent than the 

analyst’s errors in measuring the true values of those quantities. In such cases it becomes important 

to recognize the errors in decision-maker’s perception of the variables under consideration.1     

To be sure, there is a stream of literature that accounts for decision-maker’s perception 

errors in choice models. For example, the stochastic user equilibrium model of route choice 

(Daganzo and Sheffi, 1977) is based on stochasticity in utility functions due to perception errors 

in route-level travel times. Further, route choice applications of discrete choice models with 

multiplicative random utility terms (Fosgerau and Bierlaire, 2009) also motivate perception errors 

as a reason for multiplicative error terms. Another study on the value of time estimation by Hess 

et al. (2017) motivates the use of multiplicative errors for the utility function to capture context 

 
1 One might suggest that that the decision-maker’s perception errors can be treated as the analyst’s errors in measuring the decision-

maker’s perceptions. However, it is useful to treat decision-makers’ errors in perceiving physical quantities separately from the 

analyst’s measurement errors. In this context, note that the analyst can make two types of measurements – (1) measurement of the 

true value of the physical quantity and (2) measurement of the decision-maker’s perceived value of the physical quantity. However, 

most often, empirical studies have access to analyst’s measurements of the true value (perhaps with some error) than the analyst’s 

measurements of the decision-maker’s perceptions. In many contexts (e.g., driver behaviour), it is much more difficult to measure 

decision-makers’ perceived values than to measure the true value of a physical quantity. Even in contexts such as mode choice, the 

analyst may have access to travelers’ perceptions of the attributes (e.g., reported travel times) of only their chosen modes. It is not 

easy to elicit travelers’ perceptions of the attributes of a mode they did not choose. Therefore, we use the term perception error to 

represent the gap between the true value and the decision-maker’s perceived value of a variable. The term measurement error may 

be used to represent the gap between the true value and the analyst’s measurement of true value of the variable. 

Further, as will be discussed in Section 3.2, theories of human perception may be invoked to guide the approach to specifying 

stochasticity due to perception errors (i.e., the gaps between true and perceived values). However, no theoretical guidance is 

available if one treats the gaps between the analyst’s measurement of the true values and the decision-maker’s perceived values as 

measurement errors (recall that the analyst was not even trying to measure the perception). If both sources of error – decision-

maker’s perception and analyst’s measurement of the truth – are prevalent, it is better to represent both these sources separately 

and bring to bear theory and data to inform both sources of stochasticity than to combine them and then try to characterize the 

resulting stochasticity. Finally, in contexts such as driving behaviour, which is an important field of study, the decision-maker’s 

perception errors are likely to be more prevalent than the analyst’s measurement errors. This is because drivers perceive and 

estimate the characteristics of their choice environment in real-time, whereas the analysts measure the same characteristics offline. 

Since much care is taken in deriving the measurements from data sources such as traffic videos, it is defensible to assume that the 

variability in analyst’s errors in measuring the true values is negligible than that due to drivers’ errors in perceiving the true values. 
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effects, such as greater variability for longer trips. To the authors’ knowledge, most of these studies 

focus on perception errors in alternative attributes or context effects on the overall utility function, 

not on specific choice environment variables that do not vary across choice alternatives but are 

included with alternative-specific coefficients in the utility functions.  

Third, most literature on accommodating EIV does so through an additive specification of 

errors in the variables, where the error term specific to a variable is added to the measurement of 

that variable. However, as will be discussed in Section 3.2, psychophysical theories of human 

perception of physical quantities motivate the need for using multiplicative errors for capturing 

perception error. In such a specification, the error term specific to a variable is multiplied to the 

measurement of that variable. As a result, the variability due to error in perception increases with 

the magnitude of the quantity being perceived, a pattern that is not straightforward to capture using 

the additive EIV specification. Further, as will be shown in Section 3.3, the additive approach to 

specifying EIV does not help in identifying variability due to errors in variables that do not vary 

across alternatives (if there are several such variables with perception errors). Only a few studies 

explore the multiplicative error specification on variables in the utility function. For example, 

Varela et al. (2018) explore both additive and multiplicative errors in latent variables to account 

for measurement errors in travel times and travel costs. However, most such studies do not delve 

into attributes that do not vary across alternatives nor focus on the perception errors of travellers.  

1.3. Current Study 

In this study, we present a discrete choice modelling framework to accommodate stochasticity in 

choice environment variables that do not vary across choice alternatives. The stochasticity may 

arise due to various reasons – decision-makers’ errors in perceiving the choice environment, 

analyst’s errors in measuring such variables, or inherent stochasticity of the variables. In this paper, 

we focus on the decision-makers’ errors in perception as the primary source of stochasticity. The 

model structure takes the form of a mixed multinomial logit (ML) model where the choice 

environment variables under consideration are specified as stochastic. To operationalize this 

framework, we evaluate two different ways of specifying errors in choice environment variables 

in discrete choice models – (a) the additive EIV specification (error term specific to a variable is 

added to the measurement of that variable) and (b) the multiplicative EIV specification (error term 

specific to a variable is multiplied to the measurement of that variable). Using the multiplicative 
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EIV specification, it is easy to accommodate that quantities of larger (smaller) magnitude are 

perceived with greater (smaller) variability. Further, we show that models with an additive error 

specification run into parameter (un)identifiability issues if the analyst attempts to recognize errors 

in more choice environment variables than the number of choice alternatives minus one. On the 

other hand, models with multiplicative errors are not saddled with such identification problems. In 

fact, in theory, and if data allows, one can attempt to recover multiplicative stochasticity separately 

for as many choice environment variables as needed.  

We also discuss the possibility of confounding between the proposed multiplicative EIV 

specification on choice environment variables and correlated random coefficients on the same 

variables. In this context, we show that a correlated random coefficients model is a more general 

specification that subsumes our proposed model with multiplicative EIV as a special case. Despite 

such confounding, we demonstrate that the estimation of such a general specification is not 

possible (due to parameter unidentifiability) if the source of stochasticity is predominantly 

multiplicative errors in the choice environment variables, as opposed to random coefficients on 

those variables. In such situations, the analyst should estimate the proposed multiplicative EIV 

model as opposed to the more general, correlated random coefficients model. 

 The proposed choice model with multiplicative errors on explanatory variables is applied 

to accommodate drivers’ perception errors in a multi-stimuli-based model of driver behaviour in 

heterogeneous, disorderly (HD) traffic streams using space-time trajectories of vehicles from an 

arterial road in Chennai, India. Specifically, a subject vehicle’s (SV) driver behaviour in the traffic 

stream is represented as a choice from a set of discrete alternatives – accelerate, decelerate, or 

maintain the same speed – at any given time. Variables used to represent the driver’s perception 

of the traffic environment, such as space gaps and relative speeds with respect to other vehicles, 

are considered stochastic to recognize the errors drivers make in perceiving those quantities.  

 Before proceeding with the empirical analysis, simulation experiments are carried out for 

the afore-mentioned choice context to evaluate the parameter recovery of the proposed model 

using the maximum simulated likelihood (MSL) estimation method. In addition to the proposed 

ML model with multiplicative perception errors (i.e., multiplicative EIV), we explore the efficacy 

of alternative ML models with random coefficients (instead of stochastic variables) and those with 

error components on the same simulated data. In doing so, we demonstrate that the estimation of 
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a general, correlated random coefficients specification is not possible if the predominant source of 

stochasticity is multiplicative errors in the choice environment variables, as opposed to random 

coefficients on those variables. Further, in some empirical contexts, since the analyst may not 

know apriori whether to focus on stochasticity in decision-makers’ response to choice 

environment variables, or their errors in perceiving those variables, or both, we conduct additional 

simulation experiments to develop guidelines for selecting a model structure and interpreting it.   

 In the empirical analysis, we explore alternative distributions for specifying multiplicative 

errors on choice environment variables. In addition, using both the estimation dataset and a 

validation dataset, we assess the importance of accommodating multiplicative perception errors 

separately for each choice environment variable. The empirical analysis also offers insights into 

the magnitudes of variability due to perception errors in different traffic environment variables.  

In the rest of this paper, Section 2 reviews the literature on driver behaviour models that 

consider perception errors and highlights how our empirical study contributes to this literature. 

Section 3 describes the proposed model structure, along with an analysis to identify an appropriate 

specification to accommodate perception errors in choice environment variables in discrete choice 

models of driver behaviour. In Section 4, details of the vehicle trajectory dataset used in this paper 

are presented. Section 5 presents the simulation experiments and findings from the experiments. 

Section 6 presents the empirical analysis and discusses the empirical findings. Section 7 

summarizes the paper and directions for future research. 

2. DRIVER BEHAVIOUR MODELS WITH PERCEPTION ERRORS 

For several decades, the typical car-following framework has been used to model driver behaviour, 

where the driver’s acceleration/deceleration actions are modelled as a response to stimuli from a 

lead vehicle ahead of the driver’s vehicle. In addition to vehicle kinematics and traffic environment 

variables, the literature abounds with studies highlighting the importance of human factors in these 

models. The human factors include, for example, drivers’ socio-demographics, physiological 

factors, personality traits, and driving skills and desires (Hamdar, 2012; Treiber and Kesting, 2013; 

Saifuzzaman and Zheng, 2014; Sharma et al., 2018). Here, we focus on driver behaviour models 

that consider errors in drivers’ perception of their traffic environment.  
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Consideration of drivers’ perception errors has long been recognized as important for 

improving the realism of driver behaviour models. For example, Gray and Regan (1998) 

demonstrate that the driver’s perceptions of ‘distances to', ‘velocities of’, and ‘accelerations of’ 

other objects are not exact. Wiedemann  (1974) recognizes that drivers cannot perceive stimuli 

below a minimum threshold value and proposes a psychophysical driver behaviour model with 

perception thresholds. Hoogendoorn et al. (2011) use this model and present a stochastic car-

following model whose thresholds are determined empirically from vehicle trajectory data. 

Further, Kikuchi and Chakroborty (1992) use fuzzy sets to represent the approximate nature of 

drivers’ decision processes. Treiber et al. (2006) use the Wiener stochastic processes to describe 

drivers’ perception errors for relative positions, speeds, and speed differences. This study 

concludes that errors in estimation (perception error) are influential on driver behaviour and affect 

the performance and stability of the vehicular traffic stream. Van Lint et al. (2017) also use the 

Wiener process to model perception error in their model for integrated analysis of lane-changing 

and car-following behaviour. Yang and Peng (2010) propose an errorable car-following model 

that considers human reaction delays, distraction, and perception limitations. Using a similar line 

of thought, Bevrani and Chung  (2012) improve Gipps’ (1981) model to accommodate human 

imperfection in perceiving and processing information and executing actions.  

 In another stream of literature, random utility maximization-based discrete choice models 

have been used to analyse various aspects of driver behaviour, including acceleration/deceleration 

decisions, lane-changing behaviour, lateral position choices, and gap-acceptance (Ahmed, 1999; 

Toledo, 2003; Choudhury, 2007). Additionally, latent variables have been used in such models to 

represent variables unobserved to the analyst, such as latent plans, latent intents, latent leaders, 

and reaction times (Choudhury, 2007; Koutsopoulos and Farah, 2012; Choudhury and Islam, 

2016), but not to represent drivers’ errors in perceiving their traffic environment. All these studies 

consider single-leader car-following behaviour. Further, most utility-based driver behaviour 

models do not consider drivers’ perception errors (except, for example, Hamdar et al., 2015). 

Many studies discussed above do not demonstrate any evidence of perception error in 

empirical data. They formulate stylized models and conduct simulation and/or numerical 

experiments to understand driver behaviour in the presence of perception error; therefore, the 

empirical evidence available is very limited in this context. Further, current literature does not 

recognize that the level of errors in perception might be different for different variables and 
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different surrounding vehicles in the traffic environment. Besides, most studies that consider 

drivers’ perception error are in the context of a single-leader car-following setting in homogeneous 

traffic conditions. Given the lack of lane discipline in heterogeneous traffic streams observed in 

many countries, multiple vehicles around a vehicle might influence its drivers’ behaviour. In such 

traffic environments, drivers need to perceive and process multiple sources of stimuli for making 

their manoeuvering decisions. Therefore, errors are likely prevalent in their perception of traffic 

environment variables such as distances and relative speeds. 

This study attempts to fill the above-mentioned gaps by considering perception errors in a 

multi-stimuli-based driver behaviour model that considers different levels of perception errors in 

different traffic environment variables with respect to different vehicles around the subject 

vehicles. The proposed framework utilizes stochastic variables to recognize that the drivers’ 

perceptions of traffic environment variables are likely to be associated with errors. Doing so allows 

the analyst to (a) empirically assess and compare the extent of stochasticity (or variance) due to 

drivers’ perception errors for different variables of influence on driver behaviour and (b) examine 

the importance of accounting for such stochasticity on driver behaviour. 

3. METHODOLOGY 

3.1. Model Structure 

Let q  and i  be the indices representing subject vehicles and their discrete manoeuvring choice 

alternatives ( a =  accelerate, d =  decelerate, s =  maintain same speed), respectively, and let *

qkx  

denote the driver’s perceived value of the thk  traffic environment variable, whose measured value 

by the analyst is qkx . Stack all the traffic environment variables *

qkx  perceived by a driver of vehicle 

q  into a vector *

qx . The driver-perceived values *

qx  are treated as stochastic variables that are 

known only up to an assumed distribution. The parameters ( )  of the distribution *( ; | )q qf x x  of 

such stochastic variables may be identified using the analyst’s measurements ( qx ) of those 

variables and the drivers’ behaviour. In this context, it is assumed that the measurements ( qx ) 

typically obtained from observed vehicle trajectory datasets are free of errors (see Footnote 1).  

Consider the following utility specification for each of the discrete manoeuvring choice 

alternatives faced by the driver of the vehicle q : 
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In this equation,   in the left side of the equation is a vector of parameters obtained by stacking 

the 
0i  and 

ik  parameters of all choice alternatives. Similarly, *

qx  is obtained by stacking all *

qkx  

variables ( 1,2,..., )k K= . Assuming a distribution ( )*;qf x   for *

qx  and integrating the conditional 

likelihood over the distribution of *

qx  results in the following unconditional likelihood expression: 

 ( ) ( )*

* * *( , ) , ;
q

qi qi q q q
x

L L x f x dx   =   (3) 

Assuming independence across all observations ( )q , the likelihood for the entire data is a product 

of the likelihoods of observed choices across all observations. The unknown parameter vector 

( , )   can be estimated using the maximum simulated likelihood (MSL) estimation routine. 

Appendix A provides details on the estimation of the proposed model, including its simulated 

likelihood function and expressions for the gradients of the simulated likelihood function.  

The likelihood expression in Eq. (3) is a mixed logit likelihood expression. However, unlike 

the typical mixed logit models where the coefficients ( )ik  are random, the above model assumes 
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the explanatory variables *( )qkx  as random while keeping deterministic coefficients. It is worth 

noting here that the stochasticity in explanatory variables *( )qkx  can potentially be confounded with 

stochasticity in coefficients ( )ik  if the random coefficients on a stochastic variable are correlated 

across different choice alternatives. This issue is discussed in detail in Section 3.4. Despite such 

confounding, simulation experiments in Section 5 help us identify when a model with stochastic 

choice environment variables is more suitable than a correlated random coefficients model. 

3.2. Specification of the Stochastic Variables ( *

qkx ) 

The most common approach to specifying errors in variables assumes that the magnitude of error 

is independent of the observed/measured value. Under this assumption, the perceived value by the 

driver of the subject vehicle q  for the thk  variable may be expressed as:  

 *

qk qk qkx x = +   (4) 

where, qk  is a normally distributed error component with an expected value of zero and standard 

deviation 
k  (other distributional assumptions may also be explored). Normalizing the mean of 

the error to zero assumes zero bias in perception (with respect to the measurement)2. However, 

this normalization is not sufficient to identify the model with additive error specification for choice 

environment variables that do not vary across choice alternatives. More on this in Section 3.3.       

An alternative to the classical additive error structure is the multiplicative structure, where 

the perceived value ( *

qkx ) of a choice environment variable is expressed as a product of the 

measured value ( qkx ) and a random error term ( qk ), as below:  

 * .qk qk qkx x =  (5)3 

Assuming no bias in perception with respect to measurement (i.e., no difference in the expected 

value of  *

qkx  and qkx ), the random error qk  should be specified to have an expected value equal 

 
2 Our assumption of zero bias with respect to measurement is made for the convenience of identification in the absence of additional 

information to inform bias in perception. However, there is a body of psychophysics literature on how human perception of time 

and other physical quantities is proportional to the magnitude of the quantity being perceived and that the bias in perception can be 

incorporated in the proportionality constant (Fechner et al., 1966). The issue of bias in perception is an avenue for further research. 
3 In another line of literature, multiplicate specification is used for the kernel error terms to develop alternative discrete choice 

models  (see Castillo et al., 2008; Fosgerau and Bierlaire, 2009; Chikaraishi and Nakayama, 2016; Ojeda-Cabral et al., 2016) In 

this study, we stay within the class of additive-RUM models where the kernel error term is additively specified.  
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to one, i.e. [ ] 1qkE  = . This normalization helps in identification as well. In this paper, we label the 

proposed choice models with multiplicative perception errors in choice environment variables as 

ML-ME models (for mixed multinomial logit models with multiplicative errors).  

A behavioural reason for specifying perception errors in the multiplicative form is that the 

errors humans make in perceiving physical quantities, such as distances, time duration, and speeds, 

depend on the magnitude of the quantity being perceived (Fechner et al., 1966). This observation 

is consistent with the intuition that larger (smaller) values of the quantity being perceived have 

larger (smaller) variability in perception. In the context of human perception of time duration, for 

example, Allan (2001) utilizes Weber’s law from the field of psychophysics to state that the 

standard deviation of human perception of time duration is directly proportional to the mean of the 

perceived duration. Some of this literature is discussed in detail in a recent paper by Chakroborty 

et al. (2021), who state that “...multiplicative errors are a natural choice while handling random 

variability in perceptions of not only time but also of other physical quantities.” This is because 

multiplicative errors allow naturally for the variability to be larger for quantities of larger 

magnitude. Therefore, in situations where the analyst believes the gap between analyst-measured 

and decision-maker’s perceived quantities is primarily due to the decision-maker’s perception 

errors, a multiplicative error specification may be preferred. Besides, physical quantities such as 

space gaps widely used in driver behaviour models should not take negative values. While relative 

quantities such as relative speeds can be negative, it is reasonable to assume that people do not 

perceive a positive relative speed as negative or vice versa. Therefore, the distributions used to 

represent user perceptions of such quantities should not flip the sign of observed values. 

Multiplicative errors using distributions with support on the right half of the real line easily satisfy 

the above requirements while also allowing both larger values (overestimation) and smaller values 

(underestimation) than the observed values. 

3.3. Identification of Stochasticity in Choice Environment Variables  

Consider a driver’s choice occasion with three alternatives – accelerate ( )a , decelerate ( )d , and 

maintain same speed ( )s  – with the corresponding utility functions denoted as qaU , qdU  and qsU , 

respectively, and three traffic environment variables that do not vary across alternatives ( 1qx , 2qx , 

and 3qx ) entering the utility functions. Specifically, consider the following utility structure: 
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* * *

0 1 1 2 2 3 3

* * *

0 1 1 2 2 3 3

( ) ( ) ( )

( ) ( ) ( )

qa a a q a q a q qa

qd d d q d q d q qd

qs qs

U x x x

U x x x

U

    

    



= + + + +

= + + + +

=

 (6) 

Note that, in the above specification, the traffic environment variables enter the utility functions 

with alternative-specific coefficients. They are not interacted with any alternative attributes 

because the choice alternatives do not have their own attributes that vary across alternatives. Such 

choice contexts without alternative attributes in the specification are common in driver behaviour 

analysis, activity-type choice analysis, and many other contexts. On the other hand, in choice 

contexts where alternative attributes are also present in the utility functions, the choice 

environment variables can enter the utility functions in one or both of the following two ways: (1) 

without interactions with alternative attributes, (2) through interactions with alternative attributes. 

The discussion in the current section is specific to the case when the choice environment variables 

are not interacted with alternative attributes.  

3.3.1. Identification for Additive Specification of Error in Choice Environment Variables   

Employing the additive error specification of Eq. (4) for choice environment variables, the utility 

structure in Eq. (6) may be written as:  

 

0 1 1 2 2 3 3 1 1 2 2 3 3

0 1 1 2 2 3 3 1 1 2 2 3 3

qa a a q a q a q a q a q a q qa

qd d d q d q d q d q d q d q qd

qs qs

U x x x

U x x x

U

          

          



= + + + + + + +

= + + + + + + +

=

 (7) 

Let the random components of the above utility functions be written as: 

 

1 1 2 2 3 3

1 1 2 2 3 3

,

,  and

qa a q a q a q qa

qd d

s

q d q d q qd

qs q

       

       

 

= + + +

=

=

+ + +  (8) 

Without loss of generality, assume that: (a) the additive perception error terms  qk are normally 

distributed with zero mean and variance 2

k
 , and (b) the kernel error terms qj  are IID Gumbel 

distributed with zero mean and scale parameter g , with the corresponding variance as 

2 2 2/ 6j g  = . The variance-covariance matrix of the random utility terms ( ,  ,  ) qa qd qs    may be 

derived as below (Nirmale, 2022):  
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1 2 3 1 2 3

1 2 3 1 2 3

2 2 2 2 2 2 2 2 2 2

1 2 3 1 1 2 2 3 3

2 2 2 2 2 2 2 2 2 2

1 1 2 2 3 3 1 2 3

2

0

0

0 0

a a a a d a d a d

a d a d a d d d d

      

      



               

               



 + + + + +
 

 = + + + + + 
 
 

 (9) 

The corresponding variance-covariance matrix for error differences (with respect to the base 

alternative, maintain same speed) is: 

 
1 2 3 1 2 3

1 2 3 1 2 3

2 2 2 2 2 2 2 2 2 2 2

1 2 3 1 1 2 2 3 3

2 2 2 2 2 2 2 2 2 2 2

1 1 2 2 3 3 1 2 3

2

2

a a a a d a d a d

a d a d a d d d d

       

       

                

                


 + + + + + +
 =  

+ + + + + +  

 (10) 

Observe from the above variance-covariance matrix that its elements do not vary across 

individuals. For examining the identifiability of a model with such a variance-covariance matrix, 

both the order condition (necessary) and the rank condition (sufficient) must be employed (Bunch, 

1991; Walker, 2001). The order condition states the maximum number of parameters that can be 

estimated, which depends on the number of alternatives in the choice set. The rank condition 

provides the actual number of parameters that can be estimated based on the postulated covariance 

structure. Finally, the positive definiteness of the covariance matrix must be verified to determine 

a valid normalization such that the hypothesized model’s true structure is maintained when 

normalization restrictions are applied.  

When discussing the order condition, it is useful to separate the covariance matrix ( ) 

into two portions – a first (alternative-specific) portion that does not vary across observations in 

the sample and a second (individual-specific) portion that varies across observations in the sample. 

The order condition only applies to the first portion. Specifically, the maximum number of 

covariance terms that can be estimated from the first portion of   is given by 
( 1)

1
2

J J
S

−
= − , 

where J  is the number of choice alternatives. In the current context, the entire variance-covariance 

matrix does not vary across observations. Therefore, with 3J = , S  becomes 2.  

According to the rank condition, the maximum number of estimable parameters (
RankM ) is: 

 [ [ ( )]] 1RankM rank jacobian vecu =  −  (11) 
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where, ( )vecu   is the function to vectorize the unique elements of 
  into a column vector. The 

resulting ( )vecu  and its Jacobian matrix [ ( )]jacobian vecu   for the error difference variance-

covariance matrix in Eq. (10) are:  

 
1 2 3

1 2 3

1 2 3

2 2 2 2 2 2 2

1 2 3

2 2 2 2

1 1 2 2 3 3

2 2 2 2 2 2 2

1 2 3

2

( )

2

a a a

a d a d a d

d d d

vecu

   

   

   

      

         

      



 + + +
 

 = + + + 
 

+ + +  

 (12) 

 and 

2 2 2

1 2 3

1 1 2 2 3 3

2 2 2

1 2 3

2

[ ( )] 1

2

a a a

a d a d a d

d d d

Jacobian vecu

  

     

  



 
 

 =  
 
 

. (13) 

The rank of this Jacobian matrix is 3. It can be verified that even if there were more than three 

traffic environment variables with additive errors, the rank would be equal to 3. Therefore, only 

two parameters can be estimated in the variance-covariance matrix  . This suggests that one 

cannot estimate unique scale parameters associated with the additive perception error terms 

separately for each of the three traffic environment variables.  

The above discussion was for a specific case of 3 choice alternatives. In a general case with 

J  choice alternatives, it can be shown that an additive error specification in choice environment 

variables results in order and rank conditions that allow the identification of up to 1J −  parameters 

in the variance-covariance matrix ( ) of error terms. Therefore, in contexts with small choice sets 

(such as the current empirical context with only 3 alternatives), it is not possible to explore additive 

stochasticity in several choice environment variables that enter the utility functions without 

interacting with any alternative attributes.   

3.3.2. Identification for Multiplicative Specification of Errors in Choice Environment Variables 

Employing the multiplicative error specification of Eq. (5) for choice environment variables, the 

utility structure in Eq. (6) may be written as: 

 

0 1 1 1 2 2 2 3 3 3

0 1 1 1 2 2 2 3 3 3

( ) ( ) ( )

( ) ( ) ( )

qa a a q q a q q a q q qa

qd d d q q d q q d q q qd

qs qs

U x x x

U x x x

U

       

       



= + + + +

= + + + +

=

 (14) 

Let the random components of the above utility terms be written as: 
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1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3

( ) ( ) ( )

( ) ( ) ( )

qa a q q a q q a q q qa

qd d q q d q q d q q qd

qs qs

x x x

x x x

       

       

 

= + + +

= + + +

=

 (15) 

As discussed earlier, the random error qk  should be specified to have an expected value of one, 

i.e., [ ] 1qkE  = . Further, the sign of a perceived variable value can be assumed to be the same as 

that of the observed value. And physical quantities such as distances and time ought to be positive. 

Therefore, distributions with support on the positive side of the real line are suitable for qk .  

To continue the discourse, let us assume that: (a) the perception error term qk  is 

lognormally distributed with location parameter 
k , scale parameter 

k
 , and mean 1, and (b) the 

kernel error terms qj are IID Gumbel with location parameter zero and scale parameter g  

(variance 2 2 2/ 6g  = ). For the expected value of the lognormally distributed qk  term to be 1 its 

parameters should fulfil the restriction that 1,2,3
2

k

k
k




−

=  = . With these assumptions, one can 

derive the variance-covariance matrix of the stochastic utility terms as below: 

 

( ) ( , ) ( , )

( , ) ( ) ( , )

( , ) ( , ) ( )

qa qa qd qa qs

qa qd qd qd qs

qa qs qd qs qs

Var Cov Cov

Cov Var Cov

Cov Cov Var

    

    

    

 
 

 =  
 
 

 (16) 

where,  

( )

2 2 2 2 2 2 2

1 1 1 2 2 2 3 3 3

2 2 2 2 2 2 2

1 1 1 2 2 2 3 3 3

2

2

1 1 1

( ) ( ) [exp( ) 1] ( ) [exp( ) 1] ( ) [exp( ) 1]

( ) ( ) [exp( ) 1] ( ) [exp( ) 1] ( ) [exp( ) 1]

( )

( , ) exp

qa a q a q a q

qd d q d q d q

qs

qa qd a d q

Var x x x

Var x x x

Var

Cov x

   

   



       

       

 

   

= − + − + − +

= − + − + − +

=

= ( ) ( )
2 2

2 2 2

1 2 2 2 2 3 3 3 3( ) exp( ) exp( )

( , ) 0

( , ) 0.

a d q a d q

qa qs

qd qs

x x

Cov

Cov

        

 

 

+ +

=

=

  

The corresponding covariance matrix of error differences with respect to the base alternative is: 

 
( ) ( ) 2 ( , ) ( , ) ( )

( , ) ( ) ( ) ( ) 2 ( , )

qa qs qa qs qa qd qs

qa qd qs qd qs qd qs

Var Var Cov Cov Var

Cov Var Var Var Cov

      

      

+ − + 
 =  

+ + − 
 (17) 
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Observe from the above variance-covariance matrix that, unlike in the case of additive error 

specification, the measurements qkx  enter the variance-covariance matrix and render its elements 

to vary across observations. Such additional information derived from the variation of the 

covariance matrix across observations helps in uncovering stochasticity (
k

 parameters) for as 

many traffic environment variables as needed, just as the typical mixed logit model allows the 

estimation of random coefficients on any number of alternative attributes (Walker, 2001). In sum, 

the multiplicative error specification, in theory, allows the estimation of stochasticity in any 

number of choice environment variables entering the utility functions – as long as the variables 

have a statistically significant influence on the choice outcome. Of course, empirical identifiability 

issues might arise if one attempts to uncover stochasticity in too many variables. 

 A final note is in order here regarding the suitability of our findings on the econometric 

identifiability of multiplicative vs. additive stochastic specification for errors in variables that do 

not vary across alternatives. As mentioned earlier, the findings in this section on parameter 

identifiability are specific to contexts when choice environment variables enter the utility functions 

without interacting with alternative attributes. On the other hand, in situations when the choice 

environment variables (also, demographic variables) are interacted with alternative attributes that 

vary across alternatives and individuals (e.g., income interacted with mode-specific costs in mode 

choice models), such interactions render the resulting variance-covariance matrix of the random 

utility terms to vary across individuals. This can potentially help improve the identifiability of the 

parameters of additive stochastic specification on choice environment variables that are interacted 

with alternative attributes – if the coefficients on such interactions are specified as deterministic. 

Of course, this note is based purely on statistical considerations of parameter identifiability. 

However, for variables representing physical quantities (such as space gaps) that involve 

perception errors of the decision-makers, psychophysical theories of human perception favour the 

multiplicative stochastic specification – regardless of how the variables enter the utility functions. 

3.4. Comparison with the Error Components Specification  

It is important to note that the above-discussed multiplicative specification allows separate 

identification of stochasticity for each choice environment variable (i.e., one can estimate 
k

  

separately for each *

qkx ) that has a statistically significant influence on the choice outcome. 
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Therefore, unlike in Díaz et al. (2015),  there is no need to combine the stochasticity of all variables 

into alternative-specific error components. This helps in (1) the interpretation of the uncovered 

stochasticity separately for each choice environment variable and (2) comparing variability due to 

perception errors in different choice environment variables. 

 Note that stochasticity in choice environment variables introduces differential variance 

across choice alternatives (because of alternative-specific coefficients on these variables) and 

correlations among utility functions (because of common stochastic variables entering different 

utility functions). Therefore, one might suggest that error components that allow heteroscedasticity 

across alternatives or correlation among choice alternatives can help capture stochasticity due to 

perception errors in choice environment variables. This is unlikely because multiplicative 

stochasticity is not easily separable from the deterministic utility function into error components. 

Therefore, existing variants of mixed logit models, such as error component models, may not be 

suitable to accommodate such stochasticity. This is demonstrated through both simulated data and 

empirical data in Sections 5 and 6, respectively.  

3.5. Comparison with the Random Coefficients Specification 

In the context of the multiplicative stochasticity specification as in Eq. (5) for choice environment 

variables, the stochasticity in the qk  term might be confounded with random heterogeneity in 
ik  

(i.e., drivers’ sensitivity to the variable *

qkx ), even if the intent of including it is to capture 

stochasticity in *

qkx . One can see this by substituting qk qkx   for *  qkx in the utility functions, as below:  

 

0
1

0
1k

K

qk qk qa

K

qk qk qd

qs

qa a ak
k

qd d dk

qs

U

x

U

x

U

  



  

=

=

=  +

=

+

+

=

+   (18) 

There are two possible cases in the context of random coefficients in the above utility functions. 

The first case is when 
ak  and 

dk  are random but uncorrelated. The risk of confounding between 

the stochasticity in qk  and that in 
ak  and 

dk  is low in this case. This is because 
ak  and 

dk   are 

alternative-specific, and their distributions would be different, even if their standard deviations are 

of the same value. On the other hand, the distribution of *

qkx  is the same regardless of which 
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alternative’s utility function it enters because *

qkx  does not vary across alternatives. Therefore, if 

there are no strong reasons to believe that 
ak  and 

dk  are correlated, one can safely interpret qk  

as representing stochasticity due to perception errors than random heterogeneity in 
ak  or 

dk . 

 The second, more general case is when 
ak  and 

dk  are correlated random coefficients 

(CRC). There is a high risk of confounding in this case because the correlation between 
ak  and 

dk  can pick up the stochasticity in qk , which reduces the need for (and identifiability of) a separate 

qk  term. Therefore, in situations with both stochastic variables ( *

qkx ) and correlated random 

coefficients on those variables, the correlated random coefficients (CRC) model structure without 

additional qk  terms might suffice. Alternatively, an uncorrelated random coefficients model with 

additional qk  terms may be explored as well. In either case, one cannot separately identify the 

correlations between random coefficients from stochasticity in the variables. Nonetheless, either 

of these models would work better than a model with only multiplicative stochastic terms ( qk ) 

and no random coefficients.4  

However, an important question in this context is whether the CRC model can be used if 

the primary source of stochasticity is in *

qkx , not in its coefficients. In such situations, although the 

CRC model is a more general structure that subsumes the multiplicative stochastic variable model 

as a special case, the former model would run into parameter (un)identifiability problems during 

estimation. To understand this better, consider the following utility functions with correlated 

random coefficients that are lognormally distributed:  

 
4 For the same reason, the CRC model without the qk  term can be used to represent the first case with uncorrelated random 

coefficients (
ak  and 

dk ) and stochasticity ( qk ) in the choice environment variable, assuming the distributional assumptions 

allows recasting of one model to the other. Such a model would have the same number of parameters (means and standard deviations 

of 
ak  and 

dk , and a correlation parameter) as a model that separately estimates uncorrelated random coefficients and 

stochasticity in *

qkx , ceteris paribus. In this case, the CRC model structure would not be superior to a model with uncorrelated 

random coefficients and stochastic variables. If the analyst believes the correlation among random coefficients in a CRC model is 

due to stochasticity in the corresponding variable, then the latter model should be used for interpretation. 
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qs qs

U Z x

U Z Z x

U

   

     



−

=

−

=

 = + −  − +
 

  = + −  − + − +    

=



  (19) 

In the above utility structure, the correlations are between the random coefficients of qkx  in the 

utility functions of alternatives a  and d  ( qakZ  and qdkZ   are standard normal variates). The 

lognormally distributed random coefficients are: ( )( )1exp 1akRC ak qakZ  −  −  −
   and 

( )( )1 2exp 1 1dkRC dk k qak k qdkZ Z   −  −  − + −    
, respectively. In this utility structure, when 

the following restrictions are imposed: ak dk k  = =  and 1k = , it implies that the random 

coefficients on qkx  in the utility functions of alternatives a  and d  are exactly the same (i.e., 

perfectly correlated). In such a special case, when the expected values of the random components 

of the coefficients become 1, i.e. ( )( )1exp 1 1ak qakE Z −  −  − =
  

 and 

( )( )1 2exp 1 1 1dk k qak k qdkE Z Z  −   −  − + − =      
, the utility structure simplifies as below: 

 

( ) ( )

( ) ( )
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0 1

2

0 1

exp exp 0.5

exp exp 0.5

K

qa a akRC k qak k qk qak

K

qd d dkRC k qak k qk qdk

qs qs

U Z x

U Z x

U

    

    



=

=

= +  −  +

= +  −  +

=



  (20) 

Assuming ( )2exp 0.5ak qak k qkZ  − =  , ( )exp akRC ak = , and ( )exp dkRC dk = , the above utility 

structure simplifies to that in Eq. (18), where qk  is viewed as a multiplicative error on qkx .  

In sum, the proposed model with multiplicative stochasticity (EIV) on a choice 

environment variable is a special case of a CRC model with perfectly correlated random 

coefficients on that variable. Given this result, a natural question is what is the need for the 

proposed multiplicative EIV model when it is a special case of a more general CRC model? To 

answer this question, it is important to note that one cannot estimate a CRC model when the 

primary source of stochasticity is multiplicative EIV and not random parameters (for variables that 



21 

 

are not alternative-specific). The estimation would lead to identification problems because the 

single source of stochasticity (multiplicative EIV) is not sufficient to identify different random 

parameters that are perfectly correlated, have the same scale parameters, and have an expected 

value of 1 (this is demonstrated using simulated data in Section 5.4). In such situations, a CRC 

model would be identified only if the above-mentioned constraints are imposed. But such a model 

is the same as the model with multiplicative EIV and no random coefficients. Therefore, when the 

data has only multiplicative stochasticity in attributes and no random heterogeneity in response to 

those attributes, the multiplicative EIV specification should be preferred.5  

3.6. Alternative Distributions for Multiplicative Errors in Choice Environment Variables 

As indicated earlier, choice environment variables representing physical quantities such as 

distance, time, and speed cannot be negative. Also, it is reasonable to assume that people do not 

perceive positive relative speeds as negative or vice versa. Therefore, the distributions used for 

multiplicative errors in such choice environment variables should not flip the sign of the observed 

value. Further, the expected value of the distribution ought to be normalized to 1 for identification 

and for zero bias in perception. The statistical literature has a variety of distributions with support 

on the positive semi-infinite interval. In this study, we explored the following three distributions: 

(1) the power lognormal (PLN) distribution, which subsumes the lognormal distribution as a 

special case, (2) the Weibull distribution, which subsumes the Rayleigh distribution and the 

exponential distribution as special cases, and (3) The Fréchet distribution.  

Table B.1 in Appendix B provides a brief overview of each of these distributions, including 

their density function, permissible ranges of parameter values and support of the distribution. In 

addition, the expression for the location parameter ( )  is provided as a function of the scale 

parameter ( )  and other (if any) parameters of the distribution – to normalize the expected value 

 
5 In general, mixed multinomial outcome models with correlated random coefficients (CRC) may be viewed as more 

general versions of models with a single source of unobserved heterogeneity common to multiple parameters or 

variables. In such situations, although the CRC model subsumes the specifications with a single source of unobserved 

heterogeneity as special cases, attempts to estimate the CRC model will likely run into identification problems as it 

involves more parameters than those necessary to identify a single source of heterogeneity. One such situation is the 

model discussed in this paper, where the primary source of unobserved heterogeneity arises due to human errors in 

the perception of physical quantities (more generally, errors in variables that do not vary across alternatives). Another 

such situation arises when random heterogeneity in the scale of utility functions across individuals is the primary 

source of unobserved heterogeneity (see Hess and Train (2017) for a discussion on the relationship between scale 

heterogeneity and correlation in random coefficients). Even in the latter situation, estimating a CRC model would be 

encountered with parameter identification issues. 
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of the distribution to 1. The expressions for inverse CDF function and standard deviation are 

provided when the expected value of the distribution is equal to 1. The inverse CDF function is 

useful for simulating the corresponding distributions in MSL estimation. The standard deviation 

is useful for comparing variations in perception errors of different variables.  

The first application of PLN distribution in the choice modelling literature was by Bhat 

and Lavieri (2018), who used it for random coefficients on travel time and travel cost variables. 

Other than the location parameter and scale parameter, a power parameter ( )p  governs the 

thickness of the distribution’s tail. At 1p = , the distribution becomes lognormal. As the value of 

p  increases beyond 1, the tail of the distribution becomes thinner. This property, as discussed in 

Bhat and Lavieri (2018), makes it easier to estimate the parameters of a PLN distribution (when 

1p  ) compared to those of a lognormal distribution. Note also that the location parameter can be 

any real value for PLN and lognormal distributions while keeping the support to be strictly 

positive. Thanks to this property, there is no need to constrain the value of   (i.e., the analyst can 

let the data decide its value).  

For the other distributions reviewed in the table, however, the location parameter ( )  

cannot be negative. This, combined with the normalization that the expected value is 1, imposes a 

constraint on the permissible values of the scale parameter. Furthermore, for these distributions   

is the minimum value that a random variable can take. All these constraints make it difficult to 

estimate models with such distributions for multiplicative errors in choice environment variables. 

This is because estimating a scale parameter (while 0  ) implies that the distribution of the 

perception error does not allow values less than  . This implies that people do not underestimate 

choice environment variables below what is permissible by   – an assumption that cannot be 

easily justified. Instead, setting   a prespecified value fixes (restricts) the scale parameter because 

of the normalization that the expected value is 1. Therefore, the PLN distribution is likely to be 

more suitable than the other distributions for multiplicative stochasticity.  

4. DATA 

The main source of data used in this study – both for simulation experiments and empirical analysis 

– comes from a 30-minute video of a heterogeneous traffic stream on an urban arterial stretch of 

245 m in the city of Chennai, India. Kanagaraj et al. (2015) processed the raw video data into 
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vehicle trajectories and made it available for use by the research community. Their vehicle 

trajectory data includes information on the type and dimensions of each vehicle in the video and 

the space-time trajectory of each vehicle at a 0.5 s resolution, including the position, speed, and 

acceleration/deceleration values in both the longitudinal and lateral dimensions (to the roadway).  

In another study, Nirmale et al. (2021) further processed this data to identify a rectangular 

influence zone around each vehicle at each time step of 0.5 s, as shown in Figure 1. The influence 

zone was of length 30 m (plus the vehicle’s length), with the road boundaries defining the width 

of the influence zone. In this figure, the vehicle in red colour and marked SV is the subject vehicle. 

The influence zone around the SV is divided into five compartments. The space directly ahead of 

SV is labelled the middle front (MF) compartment, the space ahead to the left of SV is labelled the 

left front (LF) compartment (similarly, the space ahead to the right of SV is called the RF 

compartment), and the adjacent space to the left of SV is called the left side (LS) compartment 

(space to the right side of SV is called the RS compartment). Vehicles in each of these 

compartments are labelled accordingly as shown in the legend of the figure. 

 

Figure 1 Structure of influence zone around a subject vehicle (Source: Nirmale et al., 2021) 

At each 0.5 s time instance t  for each subject vehicle, the following data were identified: (a) the 

longitudinal and lateral position, speed, and acceleration/deceleration/steady speed states of the 

subject vehicle at the time instance t  and at 0.5 st −  (note: 0.5 s is considered the reaction time, 

based on an analysis by Nirmale et al., 2021) (b) all other vehicles and their characteristics (type 

and dimensions) and infrastructure elements within the influence zone at 0.5 st − ,  and (c) traffic 
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environment variables such as space gaps and relative speeds of the SV with respect to other 

vehicles and infrastructure elements in the influence zone at 0.5 st − . The final data comprises 

17,852 observations from 749 passenger cars. Of these records, a subset was chosen for simulation 

experiments and empirical analysis. The remaining data were set aside for validation purposes. 

5. SIMULATION STUDY   

We carried out simulation experiments for the following purposes: (a) to evaluate the ability to 

identify and retrieve parameters of the proposed multiplicative EIV model using MSL estimation, 

(b) to compare the performance of the proposed multiplicative EIV model against the typically 

used mixed logit models with random coefficients or error components when the data generation 

process (DGP) has stochasticity in explanatory variables *( )qkx  but not in their coefficients (  )ik , 

(c) to evaluate alternative model structures when the DGP has stochasticity in the coefficients of 

choice environment variables (  )ik , but not in the variables themselves *( )qkx , and (d) to develop 

guidelines for which model structure to use when. This section describes the simulation setup, 

presents the results, and discusses findings from the simulation experiments.  

5.1. Experimental Design for Synthetic Dataset Generation 

To generate synthetic datasets for the simulation experiments, we used a subset of 8,540 

observations from the earlier-described empirical data for measurements of the explanatory 

variables (  qkx ). The data were used to estimate simple empirical models for the proposed model 

structure with multiplicative perception errors for the traffic environment variables. Next, the 

parameter estimates of these empirical models were assumed as ‘true’ parameter values and 

applied back on the same empirical data to calculate the utility function values for each choice 

alternative – acceleration, deceleration, and maintain same speed. To do so, the random 

components of the utility functions were simulated according to their assumed distributions. 

Subsequently, the alternative with the highest utility value was denoted as the chosen alternative.  

 The following four variables were assumed to enter the utility function of a subject vehicle 

(SV) 'q s  driver: (a) speed of the SV *

1( )qx , (b) perceived longitudinal space gap between SV and 

MF1 *

2( )qx , (c) perceived relative speed between SV and MF1 *

3( )qx , and (d) perceived relative speed 

between SV and LF1 *

4( )qx . Among these four variables, it was assumed that the SV’s driver would 
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know her/his vehicle’s speed accurately (i.e., *

1 1q qx x= ). The other three variables were considered 

stochastic due to multiplicative perception errors. That is, * ( 2,3,4)qk qkqkx kx = = , where qkx  is the 

observed value of the thk  traffic environment variable and qk  is the multiplicative error term 

assumed to be power lognormal (PLN) distributed. The resulting utility functions for acceleration, 

deceleration, and maintain same speed decisions – , ,qa qd qsU U U – are as below: 
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In the above utility functions, 
ak  and 

dk  ( 1,2,3,4)k =  are coefficients of the traffic environment 

variables ( * ; 1,2,3,4qkx k = ) in the acceleration and deceleration utility functions, respectively. The 

parameters of the PLN distributed terms ( ; 2,3,4)qk k =  for perception errors are the scale 

parameter 
k  and power parameter 

kp , with the location parameter 
k  set to be equal to

1/1

1

0

ln exp( )( )kp

k dy y −
 

− −
 
  to ensure unit expected value for the distribution. Finally, qa , qd  and 

qs  are IID standard Gumbel error terms. Table 1 (in its second column) provides the true values 

of 
ik   and 

k  used for generating the synthetic datasets. The power parameter 
kp  was set to be 3 

for all three stochastic variables * ( 2,3,4)qkx k = . For brevity, the resulting model is labelled the ML-

ME-PLN model to indicate that the multiplicative errors are specified to be PLN distributed. 

  A total of 115 datasets of 8,540 records each were generated for the ML-ME-PLN model. 

The average of the sample shares of acceleration, deceleration, and maintain same speed choices 

simulated across these datasets are 41.9%, 45.7%, and 12.4%, respectively, which are similar to 

those observed in the empirical data. 

5.2. Parameter Recovery of the Proposed ML-ME-PLN Model 

The following performance metrics were computed to evaluate the accuracy and precision with 

which the parameters of the proposed model were recovered using the MSL estimation method: 
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• Absolute percentage bias (APB): Estimate parameters for each of the 115 datasets and 

compute the mean of the estimates across all datasets. For each parameter, 

mean estimate - true value
100

true value
APB =  . 

• Finite sample standard error (FSSE): FSSE, a measure of the empirical standard error, is 

the standard deviation of the parameter estimates across the 115 datasets. 

• Asymptotic Standard Error (ASE): ASE is the mean of standard error across all datasets. 

• Root mean squared error (RMSE) = ( )
2 2mean estimate - true value FSSE+  

A summary of the above performance metrics is presented in Table 1 for each parameter. 

As can be observed from the table, the proposed model was able to recover parameters accurately 

even when only 200 Halton draws were used to simulate the distributions of perception errors. The 

mean APB value across all parameters is 4.75%, which is small. The low FSSE values suggest a 

high empirical (finite-sample) efficiency in recovering the parameters. While the FSSE values for 

the scale parameters of perception error distributions are relatively higher than those for the 

coefficients of explanatory variables, their absolute values are small. Also, the ASE values are 

close to the corresponding FSSE values, except for the scale parameter 4 , suggesting that the 

ASE values provide a good approximation to the FSSE values in finite samples. A high ASE value 

for 4  (relative to its FSSE value) may be because of the use of empirical data from the field for 

measurements of the explanatory variables.6 Nevertheless, the RMSE measure, which combines 

the bias and efficiency measures into a single metric across all parameters, is small, suggesting 

very good parameter recovery. Importantly, these results demonstrate that it is possible to 

separately identify stochasticity in each choice environment variable through the proposed 

specification rather than combining the stochasticity of all variables into a few error components. 

This helps in obtaining insights into which variables are associated with greater variability than 

others. 

 

 
6 When we conducted additional simulations using fully simulated data (i.e., the measurements of explanatory variables, too, were 

simulated), we observed accurate and efficient parameter recovery for all parameters and did not encounter issues such as the ASE 

and FSSE values being quite different. 
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Table 1 Metrics of Parameter Recovery for the ML-ME-PLN Model 

Parameters True value Mean 

estimate 

APB (%) FSSE ASE RMSE 

0a  2.010 1.978 1.585 0.230 0.265 0.232 

0d  -1.320 -1.375 4.172 0.233 0.298 0.240 

1a  -0.100 -0.094 5.549 0.024 0.027 0.025 

1d  0.230 0.240 4.147 0.024 0.029 0.026 

2a  0.030 0.026 14.235 0.012 0.011 0.013 

2d  -0.120 -0.120 0.315 0.045 0.050 0.045 

3a  0.330 0.334 1.346 0.094 0.095 0.094 

3d  -0.390 -0.417 6.828 0.103 0.118 0.107 

4a  0.100 0.094 6.228 0.026 0.026 0.027 

4d  -0.020 -0.021 5.804 0.015 0.018 0.015 

2  2.760 2.535 8.152 0.339 0.365 0.407 

3  2.030 2.038 0.389 0.325 0.354 0.325 

4  1.250 1.212 3.028 0.416 1.136 0.418 

Mean value -- -- 4.752 0.145 0.215 0.152 

5.3. Performance of Alternative Mixed Logit Models with Random Coefficients or Error 

Components when the Primary Source of Stochasticity in DGP is in *

qkx , Not in 
ik  

In addition to the proposed ML-ME-PLN model with the utility specification as in Equation (21), 

the following alternative ML models were estimated on the same simulated data from Section 5.1:  

(a) ML model with PLN distributed uncorrelated random coefficients (labelled ML-RC-PLN), 

with the following utility structure:  
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Here, qak  and qdk  are PLN distributed (and uncorrelated) random coefficients on qkx  in 

the acceleration and deceleration utility functions, respectively. The location and scale 

parameters of these random coefficients are to be estimated.  

(b) ML model with PLN distributed and correlated random coefficients (labelled ML-CRC-

PLN). In this model, the utility equations would look similar to those in Eq. (22), except 

that the PLN distributed random coefficients  qak  and qdk  are correlated with a correlation 

parameter k . The correlated PLN distributed terms can be expressed as:  
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Recall (from Section 3.5) that the correlated random coefficients model subsumes the 

multiplicative EIV model as a special case when the corresponding random coefficients 

are perfectly correlated (with the same scale parameters) and have an expected value of 1. 

(c) ML model with error components for correlation between the utility functions of 

acceleration and deceleration alternatives, but no random coefficients or stochastic 

variables (labelled ML-EC-rho), as below: 
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Here, qad  is a normal distributed error component with mean zero (and scale to be 

estimated) to allow correlation between the acceleration and deceleration utility functions.  

(d) ML model with error components for heteroscedasticity across choice alternatives but no 

random coefficients or stochastic variables (labelled ML-EC-het), as below: 
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Here, qa  and qd  are normal distributed error components with mean zero (and scale 

parameters to be estimated) to allow heteroscedasticity across utility functions.  

To compare the proposed ML-ME-PLN model vis-à-vis alternative ML models with 

random coefficients or error components, we compared the model fit using the Akaike Information 

Criteria (AIC) and the Bayesian Information Criteria (BIC). Table 2 presents the percentage of 

simulated datasets (of the 115 datasets) for which each alternative model structure showed better 

AIC or BIC values than others. As can be observed from this table, the proposed ML-ME-PLN 
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model provided a better fit than all other ML models in more than 92% of the datasets. The ML 

model with PLN distributed but uncorrelated random coefficients was better for less than 7% of 

the datasets. Interestingly, the model with PLN distributed and correlated random coefficients 

never performed better than the ML-ME-PLN model (more on this soon). And neither of the error 

components models performed better in any of the 115 datasets. The above results suggest that 

typically used ML models with random coefficients on a choice environment variable or those 

with error components do not help capture stochasticity in that variable (if multiplicative EIV, not 

random coefficients, is the predominant source of stochasticity). In addition, such models lead to 

inferior fit to data and potentially biased parameter estimates.  

Table 2 Performance of alternative mixed logit models when the data generation process 

has stochasticity in choice environment variables 

Preferable model over the other models 

No. of 

datasets 

according 

to AIC (%) 

No. of 

datasets 

according to 

BIC (%) 

  ML-ME-PLN model (PLN distributed stochastic variables) 94.78 93.04 

  ML-RC-PLN model (PLN distributed uncorrelated random coefficients) 5.22 6.96 

  ML-CRC-PLN model (PLN distributed correlated random coefficients)* 0.00 0.00 

  ML-EC-rho model for correlation between qaU   and qdU  0.00 0.00 

  ML-EC-het model for heteroscedasticity across alternatives 0.00 0.00 

Total number of simulated datasets 115 

* Parameter identification problems were faced when estimating the ML-CRC-PLN model 

Importantly, the ML-CRC-PLN model, even though it is a more general model that 

subsumes the DGP (with only multiplicative stochastic variables) as a special case, could not be 

estimated in most of the 115 datasets. Attempts to estimate this model resulted in non-invertible 

Hessians or very high standard errors for estimates related to the correlated random coefficients. 

These manifestations are characteristic of an unidentified model. Further, the correlation parameter 

( k ) estimates, if the corresponding standard errors could be determined, were of high magnitude 

(higher than 0.9), indicating near perfect correlation between the corresponding random 

coefficients across different choice alternatives. These results corroborate our claim in Section 3.5 

that the correlated random coefficients model cannot be used when the primary source of 

stochasticity is predominantly due to multiplicative stochasticity in choice environment variables. 

In such a situation, the analyst should estimate a simpler model that directly specifies 

multiplicative stochasticity in choice environment variables than a CRC model. 
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5.4. Performance of Alternative Mixed Logit Models when Underlying Data has Only 

Random Coefficients on *

qkx  but No Stochasticity in *

qkx  

Now we examine which model performs better when the underlying data has random coefficients 

in the choice environment variables but no stochasticity in those variables. To do this, we simulated 

100 sets of datasets – each set includes six datasets simulated assuming six different DGPs as 

described below (each dataset is of sample size 3,000): 

1. DGP1: Two uncorrelated random coefficients on a choice environment variable (in two 

different utility functions), with scale parameter values close to each other (scale 

parameters are 1.00 and 1.20,   = 0.0). 

2. DGP2: Two uncorrelated random coefficients on a choice environment variable, and the 

scale parameters are not close to each other (scale parameters are 0.80 and 1.50,   = 0.0). 

3. DGP3: Two correlated random coefficients on a choice environment variable, with scale 

parameter values close to each other, and the correlation level is high (scale parameters are 

1.00 and 1.20,   = 0.7). 

4. DGP4: Two correlated random coefficients on a choice environment variable, with scale 

parameter values close to each other, and the correlation level is low (scale parameters are 

1.00 and 1.20,   = 0.3). 

5. DGP5: Two correlated random coefficients on a choice environment variable, their scale 

parameter values are not close to each other, and the correlation level is high (scale 

parameters are 0.80 and 1.50,   = 0.7). 

6. DGP6: Two correlated random coefficients on a choice environment variable, their scale 

parameter values are not close to each other, and the correlation level is low (scale 

parameters are 0.80 and 1.50,   = 0.3). 

Table 3 presents the performance of alternative mixed logit models for all six cases 

according to the AIC metric. As can be observed, in each of the six cases, for most of the 100 

simulated datasets, the true DGP model performs better than the ML-ME-PLN model that specifies 

multiplicative stochasticity on the variable. These results suggest that when the underlying DGP 

has random coefficients with or without correlations, a model that specifies only multiplicative 

stochasticity on the corresponding variables is less likely to pick up such stochasticity. Only for 

DGP3, where the random coefficients have similar standard deviation values and high correlation, 

the multiplicative stochasticity model showed better performance in 29% of the datasets. That is, 
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the multiplicative error model is likely to pick up correlated random sensitivities to an attribute 

only if the correlation is high and the standard deviations of random coefficients are similar.7  

Table 3 Statistical performance of alternative ML models (according to AIC)  

Data generating 

process 

No. of datasets where ML-

CRC-PLN model is 

preferred over the other 

models 

No. of datasets where ML-

RC-PLN model is 

preferred over the other 

models 

No. of datasets where ML-

ME-PLN model is 

preferred over the other 

models 

DGP1 -- 87 13 

DGP2 -- 95 5 

DGP3 71 -- 29 

DGP4 82 -- 18 

DGP5 81 -- 19 

DGP6 90 -- 10 

5.5. Guidance for Model Selection 

Based on the conceptual discussions in Section 3 and the simulation experiments in this section, 

here we provide a few guidelines to help the analyst decide which model structure to work with – 

for choice environment variables that do not vary across alternatives. 

• First, in addition to the basic MNL, if the analyst believes the presence of stochasticity due to 

random coefficients, or EIV, or both, then estimate all three models – a random coefficients 

model without correlations (RC model), a CRC model considering correlated random 

coefficients across different choice alternatives, and a multiplicative EIV model without 

random coefficients on the variables with errors. One may also estimate a multiplicative EIV 

model with uncorrelated random coefficients on the variables with errors. However, such a 

model can be recast as a CRC model if the distributional assumptions allow doing so. 

 
7 We simulated another set of 100 datasets with two uncorrelated random parameters that have the same standard deviation value, 

along with stochasticity on the variable with random coefficients. For these datasets, a model with only stochastic variables did not 

perform as well as a model with uncorrelated random coefficients and stochasticity on the variable. In fact, we were able to recover 

the model parameters very well for the latter model that reflects the DGP. These results, combined with the other results in this 

section suggest that the multiplicative error model is unlikely to pick up random heterogeneity in correlated coefficients unless the 

correlation is high and standard deviations are of similar value.   

To be sure of our conclusions in this section, we also compared the statistical fit of alternative models using the BIC metric 

as well. The BIC metric favoured the ML-ME-PLN model with multiplicative stochastic variables more often than the AIC metric. 

This is because BIC penalizes complex models (i.e., models with more parameters) more heavily than AIC (Bishop, 2006). Given 

a family of models, including the true model, the probability that BIC will favour the correct model approaches one as the sample 

size tends to infinity (Hastie et al., 2009). Since we used a sample size of only 3000 for our simulated datasets, and since it is known 

that the BIC metric penalizes complex models more heavily than the AIC metric, we used the AIC metric for our evaluation.  
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• Considering that most empirical research involves moderate-sized datasets of a few thousand 

samples or less, use AIC to determine a preferred model structure. In addition to data fit metrics 

such as AIC, use the following guidelines to select a model structure and its interpretation. 

• If the CRC model estimation shows signs of unidentifiability (as discussed in Section 5.4) and 

the correlation parameter estimate is of high value for a choice environment variable under 

consideration, there is a high likelihood that the EIV for that variable is the predominant source 

of stochasticity. The goodness-of-fit metrics, such as AIC, would favour the EIV specification. 

• If the CRC model (or an EIV model with uncorrelated random coefficients) offers a better 

statistical fit than the other models, then the underlying DGP may be one of the following: (1) 

correlated random sensitivities to the variable under consideration, or (2) uncorrelated random 

sensitivities to the variable in addition to EIV in the variable, or (3) both correlated random 

sensitivities and EIV. In such a case, the analyst should use their judgement from the empirical 

context to determine if the correlations are due to correlated sensitivities on a variable, or EIV, 

or both. For example, in the driver behaviour context, it is unlikely that unobserved sensitivities 

to variables such a space gaps and relative speeds have a positive correlation between the 

acceleration and deceleration choice alternatives. Several unobserved factors, such as drivers’ 

aggressiveness, are likely to be associated with opposite preferences between acceleration and 

deceleration decisions. So, a positive correlation between random coefficients of such choice 

alternatives, if any, is likely due to drivers’ perception errors but not due to correlated 

unobserved sensitivities. On the other hand, if the variable under consideration is the type of 

the lead vehicle in driver behaviour models or traveller’s age in mode choice models, the 

likelihood of EIV is small, for vehicle type (age) can be perceived (measured) accurately. 

Further, given the close relationship between the different model structures discussed here, it 

is likely in some empirical contexts that the difference in model fit between different models 

may not be practically significant. Therefore, the analyst should combine statistical fit 

considerations with intuitive considerations based on the knowledge of the empirical context 

to decide the final model structure and its interpretation. 
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6. EMPIRICAL ANALYSIS 

6.1. Alternative Model Specifications 

To incorporate perception errors in traffic environment variables, we estimated only models with 

the multiplicative specification of perception errors. This is because the additive specification (as 

discussed in Section 3) is saddled with parameter identifiability problems. A variety of 

distributions – lognormal, power lognormal (PLN), Rayleigh, Weibull, exponential, and Fréchet – 

were explored to represent multiplicative perception errors for traffic environment variables. As 

discussed earlier, the location parameter ( )  of each of these distributions was specified as a 

function of the scale parameter such that the expected value of the distribution was 1. Doing so 

made it difficult to estimate models for all distributions except PLN and lognormal distributions 

for the reasons discussed in Section 3.6. On the other hand, setting   to zero and imposing an 

expected value of 1 resulted in an inferior model fit. Such restrictions automatically imply the scale 

parameter value of the distribution without utilizing empirical data to inform it. Therefore, we 

explored model specifications with PLN and lognormal distributions for perception errors.  

Specifications with lognormal distributions also encountered convergence problems, 

presumably because of the fat tail of the distribution (Bartels et al., 2006; Bhat and Lavieri, 2018). 

Therefore, all subsequent empirical analyses of the ML-ME model were conducted with the PLN 

distribution for multiplicative errors (i.e., the ML-ME-PLN model). To begin with, the power 

parameter value was fixed at 1.1, and other parameters were estimated. Subsequently, the power 

parameter was increased in increments of 0.1, and all other parameters were estimated. This was 

continued to find the maximum of maximum likelihood values among all estimated models.  

In addition to the basic MNL models and the proposed ML-ME-PLN model, all alternative 

ML models discussed in Section 5.3 were estimated. The estimations were carried out on a subset 

of 9,530 records of the available empirical data. All estimations were carried out using 400 Halton 

draws to simulate distributions of the stochastic variables (or parameters) other than the IID 

Gumbel kernel error terms. In addition, all the estimated models were applied to the remaining 

8,322 records set aside for validation. 

Among all the models estimated, the ML-EC (error component) models did not yield 

significant error components and were not statistically different from the basic MNL model, 
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corroborating our finding from the simulation experiments that multiplicative perception errors in 

choice environment variables cannot be captured through the error component models. Among the 

random coefficients models we estimated, similar to the experience with simulated datasets in 

Section 5.3, estimation of the correlated random coefficients (ML-CRC-PLN) model showed clear 

signs of parameter unidentifiability. For example, the parameter estimates of random coefficients 

on a few traffic environment variables had very high standard errors. Also, different starting values 

for the parameters resulted in different convergent values with the same log-likelihood value, 

suggesting a flat likelihood surface. We could estimate correlated random coefficients on only one 

traffic environment variable – relative speed between SV and the first lead vehicle in the middle 

front compartment. For this variable, the estimated correlation parameter between the random 

coefficients in acceleration and deceleration utility functions was not statistically different from 1. 

The near-perfect correlation suggests stochasticity in the variable (not in its coefficients).  

6.2. Goodness of Fit in Estimation and Validation Datasets 

Table 4 summarises the performance metrics of the best-fitting specifications of all other models 

estimated in this study on both estimation and validation datasets. In the estimation dataset, the 

log-likelihood ratio (LLR) tests to compare each of the ML models against the MNL model suggest 

that the latter model can be rejected at least at a 95% confidence level. Among all the ML models, 

the proposed ML-ME-PLN model with multiplicative stochasticity provides the best AIC, and rho-

square values in the estimation data. Further, we performed a non-nested hypothesis test proposed 

by Horowitz (1983) to compare the proposed ML-ME-PLN model with each of the other ML 

models. In this test, the null hypothesis that the model with a lower rho-squared value is the true 

model is rejected at the significance level given by: 

 ( ) ( )( )
1

2 2 2Significance Level =  2 (0)H L H LLL K K 
 

 − − −  + − 
 

 (26) 

where, 2

L  is the adjusted likelihood ratio index for the model with the lower value, 2

H  is the 

adjusted likelihood ratio for the model with the higher value, 
HK  and 

LK  are the number of 

parameters in models H  and L , respectively, and   is the standard normal cumulative 

distribution function. Using this test, the null hypotheses that the ML-CRC-PLN and ML-RC-PLN 

are the true models were rejected at a significance level smaller than 0.001. All these results 

suggest that the ML-ME-PLN model provides the best fit to the empirical data. Findings from the 
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application of all the estimated models to the validation dataset are similar, with the ML-ME-PLN 

model providing better predictive metrics than other models. These results suggest that allowing 

for perception errors in traffic environment variables is more important than allowing unobserved 

heterogeneity in drivers’ response to those variables, at least in the current empirical context. 

Table 4 Goodness-of-fit measures of various models estimated in this study  

Goodness-of-fit measures in estimation data (N=9,530) 

Measures 
MNL 

model 

ML-ME-

PLN model 

ML-RC-PLN 

model 

ML-CRC-PLN  

model 

Log-likelihood at zero  -10469.8 -10469.8 -10469.8 -10469.8 

Log-likelihood at constants -9316.9 -9316.93 -9316.9 -9316.9 

Log-likelihood at convergence ( )L  -8202.2 -8174.3 -8184.1 -8192.3 

Number of parameters ( )K  21 25 23 23 

LLR w.r.t. MNL (degrees of freedom) -- 55.8 (df = 4) 36.3 (df = 2) 19.9 (df = 2) 

AIC value [2 2ln( )]K L−  16446.4 16398.5 16414.1 16430.5 

Adj rho-square w.r.t. constants model  0.118 0.120 0.119 0.118 

Predictive goodness-of-fit measures in validation data (N=8,322)  

Predictive log-likelihood -7427.6 -7410.9 -7416.4 -7415.4 

Predictive AIC value 14897.1 14871.9 14878.8 14876.8 

6.3. Empirical Findings 

Table 5 reports the best-fitting empirical specification of the ML-ME-PLN model, which is the 

best-performing model of all the models estimated in this study. The findings from this model are 

discussed in detail, followed by a brief comparison with findings from the other models. The 

estimation results of other models are not reported in the table but are available in Nirmale (2022).  

6.3.1. Empirical Findings on Perception Errors 

Various empirical specifications were explored to incorporate stochasticity due to errors in 

perceiving the space gaps and relative speeds of the SV with respect to its surrounding vehicles. 

This includes: (1) a specification with each (and every) traffic environment variable having its own 

perception error term, (2) a specification with all space variables having a common error term and 

all relative speed variables having a common error term, and (3) the specification presented in this 

section, where perception error terms were specified to be common for all longitudinal space gaps 

with respect to vehicles in a given compartment (but different from those in other compartments); 

and similar specification for relative speed variables. As such, a total of ten PLN distributed 

stochastic terms were explored for the multiplicative error terms (  qk ) in the model formulation. 

This specification provided the best fit and interpretation among all specifications.  
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Table 5 Estimation results of the ML-ME-PLN model * 

Explanatory variables in the utility functions (maintain same speed is the base 

alternative) 

Acceleration  

utility  

Deceleration  

utility 

Constant  1.970 (7.18) -0.880 (-3.41) 

Subject vehicle (SV) longitudinal speed (m/s) -0.102 (-3.83) 0.231 (9.31) 

Traffic environment variables with respect to MF1 (first vehicle in MF) at t-0.5 s 
  

Space gap in longitudinal direction (m) 0.023 (2.00) -0.087 (-2.78) 

Relative speed in longitudinal direction (m/s) 0.196 (4.53) -0.259 (-5.28) 

Traffic environment variables with respect to MF2 (second vehicle in MF) at t-0.5 s 
  

Subject vehicle has 2 or more lead vehicles (One lead vehicle is base) -0.627 (-4.58) -- 

Space gap in longitudinal direction (m) 0.021 (1.81) -- 

Relative speed in longitudinal direction (m/s) 0.208 (3.70) -0.120 (-2.60) 

Traffic environment variables with respect to LF1 (first vehicle in LF) at t-0.5 s 
  

Subject vehicle has 1 or more lead vehicles (No lead vehicle is base) -- 0.448 (3.83) 

Space gap in longitudinal direction (m) -- -0.014 (-3.07) 

Lateral gap between MF1 and LF1 (m) 0.109 (2.55) -- 

Relative speed in longitudinal direction (m/s) 0.126 (2.40) -- 

Traffic environment variables with respect to RF1 (first vehicle in RF) at t-0.5 s 
  

Subject vehicle has 1 or more lead vehicles (No lead vehicle is base) -- -- 

Space gap in longitudinal direction (m) -- -- 

Lateral gap between MF1 and RF1 (m) -- -- 

Relative speed in longitudinal direction (m/s) 0.083 (3.21) -- 

Traffic environment variables with respect to LS1 (first vehicle in LS) at t-0.5 s 
  

Subject vehicle has 1 or more side vehicle (No side vehicle is base) -0.201 (-1.98) -- 

Lateral space gap (m) 0.097 (3.29) -- 

Relative speed in longitudinal direction (m/s) -- -- 

Traffic environment variables with respect to RS1 (first vehicle in RS) at t-0.5 s 
  

Subject vehicle has 1 or more side vehicle (No side vehicle is base) -- -- 

Lateral space gap (m) -- -- 

Relative speed in longitudinal direction (m/s) -- -- 

Position of subject vehicle (SV) at t-0.5 s 
  

Space gap between left edge of the SV and left edge of the road (m) -- -0.121 (-6.55) 

Variables on which perception error is considered in the ML-ME-PLN model Scale parameter Standard deviation 

Longitudinal space gaps (m) - between SV & MF1 and between SV & MF2    2.501 (7.39)** 0.076 

Relative longitudinal speeds (m/s) - between SV & MF1 and between SV & MF2   1.441 (5.38)** 0.160 

Space gap (m) in longitudinal direction between SV & LF1 -- -- 

Relative speed (m/s) in longitudinal direction between SV & LF1 1.670 (1.87)*** 0.743 

Space gap (m) in longitudinal direction with respect to RF1 -- -- 

Relative speed (m/s) in longitudinal direction between SV & RF1 1.240 (1.21)*** 0.598 

Lateral gaps (m) between MF1 & LF1 and between MF1 & RF1 1.591 (1.66)*** 0.715 

Lateral gap (m) between SV & LS1 and between SV & RS1 -- -- 

Relative speed (m/s) in longitudinal direction between SV & LS1 -- -- 

Relative speed (m/s) in longitudinal direction between SV & RS1 -- -- 

Notes: *t-statistic for each estimated parameter is reported in parentheses next to it. ** Power value is fixed at 2.5. *** Power value is 

fixed at 1.5. -- the parameter was dropped from the specifications as it was insignificant. Maintain same speed is the base alternative. 
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The bottom set of rows in Table 5 reports the scale parameter estimates of the perception 

error distribution terms in the ML-ME-PLN model. As can be observed, the empirical model 

yielded stochasticity due to perception error in five sets of traffic environment variables: (a) 

longitudinal space gaps of the SV with respect to MF1 and MF2, (b) relative longitudinal speeds 

of the SV with respect to MF1 and MF2, (c) relative longitudinal speed of the SV with respect to 

LF1, (d) relative longitudinal speed of the SV with respect to RF1, and (e) lateral gaps between 

lead vehicles in the front compartments (i.e., MF1-LF1 lateral gap and MF1-RF1 lateral gap). 

Statistically significant stochasticity was not uncovered for the other five sets of traffic 

environment variables due to different reasons. For example, we could not uncover a statistically 

significant scale parameter for the longitudinal space gap with respect to RF1. This result should 

not necessarily be interpreted as the absence of errors in perceiving this variable. To understand 

this, note from the earlier rows in the table that the variable does not enter the model specification. 

The coefficient of the variable was not statistically significant when the variable was included in 

the specification. The implication is that one cannot identify stochasticity due to perception error 

of a variable that does not have a strong influence on the choice outcome. For the same reason 

(that the variables did not have a statistically significant influence on the utility functions), the 

model did not yield statistically significant variability in the perception of relative speeds of the 

SV with respect to side vehicles (LS1 and RS1). For lateral gaps of the SV with respect to side 

vehicles (LS1 and RS1), stochasticity in perception was not uncovered, possibly because these 

vehicles tend to be in very close proximity to the SV, making its driver pay close attention to them.  

Based on the scale and power parameters for the variables for which stochasticity in 

perception was uncovered, the standard deviation of the power lognormal distribution ( )PLNStd  

may be calculated using the following expression:  

 ( )( )
1

1 1/ 2

0

exp 2 2p

PLNStd y dy Mean −
  

= −  + − 
  
  (27) 

The corresponding standard deviation parameters are reported in Table 5 in the column titled 

“Standard deviation.” Comparing the magnitudes of the standard deviation of relative speeds, it 

can be observed that the stochasticity due to perception error in relative speeds with respect to 

MF1 and MF2 is much lower than that for other vehicles (LF1, RF1). That is, a greater variation 
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is reflected in driver perceptions of the traffic environment that is not directly ahead of them. This 

may be because drivers pay greater attention to vehicles directly ahead of their vehicle than those 

that are not ahead; hence, lower variability in perception for vehicles directly ahead of the SV. 

Another observation is that stochasticity due to perception errors for relative speeds with respect 

to MF1 and MF2 is greater than that for space gaps with respect to those vehicles. This result 

suggests that drivers perceive relative longitudinal speeds less precisely than longitudinal space 

gaps. Having said that, the drivers’ perception of lateral gaps between two vehicles in the front 

compartments is associated with greater uncertainty in perception than that associated with 

longitudinal space gaps. This may be because perceiving a lateral gap between two moving 

vehicles is more difficult than perceiving a longitudinal gap with respect to one vehicle. While all 

these findings sound plausible, this is perhaps the first study to shed light on differences in the 

uncertainty of perception of different traffic environment variables. Therefore, additional 

empirical evidence is needed before stronger conclusions can be made. 

6.3.2. Empirical Findings other than Perception Errors 

The empirical model results in Table 5 offer interesting insights into driver behaviour. As 

expected, and reported by Koutsopoulos et al. (2012), a subject vehicle (SV) travelling at a higher 

longitudinal speed is less (more) likely to accelerate (decelerate) than that travelling at a slower 

speed. Further, as the relative speed or space gap of the SV with respect to the first lead vehicle 

(MF1) increases (decreases), the SV is more likely to accelerate (decelerate). In this context, the 

magnitude of the coefficient on space gap with respect to MF1 in the deceleration decision is 

greater than that for the acceleration decision. Similarly, the magnitude of the coefficient on 

relative speed with respect to MF1 in the deceleration decision is greater than that for the 

acceleration decision. These results suggest that the influence of space gap and relative speed is 

stronger on the decision to decelerate than on the decision to accelerate. This may be because the 

deceleration decision is more safety-critical than the acceleration decision. 

As discussed in Nirmale et al. (2021), space gaps and relative speeds with respect to multiple 

vehicles influence the subject vehicle drivers’ manoeuvring decisions highlighting the need to 

move beyond single-leader car-following models. In addition to the immediately leading and the 

next vehicle (MF1 and MF2) in the space directly ahead of the subject vehicle, vehicles in the left 

front (LF1), right front (RF1) and left side (LS1) also affect drivers’ decisions. For each of the 

above vehicles, the parameter estimates are in line with the expected direction of their influence. 
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For example, greater (smaller) space gaps are associated with a higher (lower) likelihood of 

acceleration and greater relative speeds are associated with a higher likelihood of acceleration. 

One of the differences between the proposed ML-ME-PLN model and the other models is 

worth noting. As per the ML-ME-PLN model, reducing the lateral gap between the vehicle in the 

MF1 and LF1 compartment might not increase the deceleration likelihood relative to the maintain 

same speed alternative. On the other hand, the MNL and the ML-RC-PLN models suggest 

otherwise, that reducing the lateral gap can lead to an increased likelihood of deceleration. This is 

perhaps because these models do not consider variability in the perception of the variable. In 

addition, several parameter estimates in the ML-ME-PLN (model with perception errors) have 

greater magnitudes than those in the MNL, ML-RC-PLN, and ML-CRC-PLN models – perhaps 

due to differences in the scales of the kernel error terms across the different models. 

7. CONCLUSIONS  

This paper proposes a discrete choice modelling framework that accommodates perception errors 

in choice environment variables that do not vary across choice alternatives. The framework takes 

the form of a mixed multinomial logit (ML) model where the choice environment variables under 

consideration are specified as stochastic. To operationalize this framework, an analysis is 

undertaken to evaluate two different ways of specifying stochastic variables in discrete choice 

models – (a) the additive EIV specification and (b) the multiplicative EIV specification. The 

additive specification assumes the errors to be independent of the magnitude of the quantity being 

perceived, whereas the multiplicative specification renders the variability in errors to depend on 

the magnitude of the quantity (i.e., higher errors for higher magnitudes). The latter is more suitable 

to represent errors in human perceptions of physical quantities. An econometric identification 

analysis suggests that only two variance-covariance parameters can be estimated for a discrete 

choice model with three alternatives with an additive error specification of errors in the choice 

environment variables. On the contrary, a multiplicative specification allows, in theory, separate 

identification of stochasticity in as many variables as the analyst would want to test – as long as 

the variables have a significant influence on the choice outcome. This helps in comparing the 

variability due to perception errors in different types of choice environment variables. 

 It is shown that the proposed model with multiplicative EIV for an attribute that does not 

change across alternatives is a special case of a more general model with correlated, alternative-
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specific random coefficients (CRC) on that attribute. However, if the primary source of 

stochasticity is due to multiplicative EIV and not due to random heterogeneity in the coefficients 

on the variable, then the more general CRC model cannot be estimated due to parameter 

(un)identifiability issues. In such a case, it is advisable to estimate the proposed multiplicative EIV 

model. Other typically used mixed discrete choice models, such as uncorrelated random 

coefficients or error components models (either for heteroskedasticity or inter-alternative 

correlations), are also not suitable in lieu of multiplicative perception errors. In addition to these 

conceptual discussions, we conducted extensive simulation experiments to verify this claim.  

It is also shown, through simulation experiments, that when the underlying DGP is random 

coefficients on such choice environment variables (whether correlated or uncorrelated), the 

multiplicative EIV model does not provide better performance than the true DGP model unless the 

random coefficients have similar standard deviation values and high correlation. Of course, when 

both multiplicative EIV for a variable and correlated random heterogeneity in sensitivities to that 

variable are prevalent, it is difficult to separately identify the multiplicative EIV from correlated 

random coefficients. In such a case, it is preferable to estimate the CRC model.  

We demonstrate the usefulness of the proposed multiplicative EIV model through an 

empirical application for analysing driver behaviour using space-time trajectories of vehicles from 

a traffic stream in Chennai, India. In this context, a subject vehicle’s (SV) driver behaviour at an 

instance in a traffic stream is characterized as the driver’s choice to accelerate, decelerate, or 

maintain same speed as a function of the various traffic environment variables such as space gaps 

and relative speeds between the SV and other vehicles around it. The empirical analysis results 

suggest that consistent with the findings from simulation experiments, the proposed ML model 

with power lognormal (PLN) distributed perception errors in traffic environment variables 

outperformed typically used ML models with random coefficients or error components. A 

correlated random coefficients (CRC) model showed signs of parameter unidentifiability and high 

correlation values suggesting that the primary source of stochasticity is due to errors in the traffic 

environment variables, not random coefficients on them. These results suggest that in driver 

behaviour models, it may be more important to accommodate drivers’ errors in perceiving their 

traffic environment than to focus on random sensitivities to the traffic environment variables (if 

one must choose between the two). Of course, in other empirical contexts, one can always explore 

the correlated random coefficient model to explore the presence of both sources of stochasticity. 
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In the context of the distributional assumptions explored for perception errors, the PLN distribution 

allowed better estimability and offered a better fit to the empirical data than alternative 

distributions such as lognormal, Weibull, Rayleigh, exponential, and Fréchet.  

The empirical model offered interesting insights on perception errors in traffic environment 

variables. First, greater variation was found in drivers’ perceptions of the traffic environment 

variables with respect to vehicles that are not directly ahead of their vehicles (than those that are 

ahead). This may be because drivers pay greater attention to vehicles directly ahead of their vehicle 

than those that are not ahead. Second, stochasticity due to perception errors for relative 

longitudinal speeds was found to be greater than that for longitudinal space gaps – perhaps because 

drivers perceive relative speeds less precisely than space gaps. Third, drivers’ perception of lateral 

gaps between two moving vehicles ahead is associated with greater uncertainty than that associated 

with longitudinal space gaps with respect to any of those vehicles. Fourth, it was not possible to 

recover variability due to perception errors for variables that did not influence the choice outcome.  

The current study can be extended in different ways. First, the empirical analysis considers 

different observations of the same vehicle (and the corresponding utility functions) as independent 

from each other. However, correlations due to driver-specific unobserved factors that persist across 

all observations of the same vehicle have been ignored. Further, other aspects such as state-

dependence, where a driver does not change the acceleration/deceleration/constant speed state 

unless there is a strong enough stimulus, ought to be considered. Also, the study does not consider 

the extent of acceleration or deceleration, which is an important dimension of driver behaviour. 

Such econometric and behavioural features ought to be explored in future work. Also, it would be 

useful to compare findings from different geographical and empirical contexts. While the findings 

from the current study sound plausible, this is perhaps the first study to shed light on differences 

in the uncertainty of perception of different traffic environment variables. Therefore, additional 

empirical evidence is needed before stronger conclusions can be made. Further, on the 

methodological front, much work needs to be done toward disentangling the stochasticity due to 

errors-in-variables and the stochasticity in random coefficients on those variables. Finally, the 

current study focuses on multiplicative stochasticity for errors in variables that do not vary across 

alternatives. There is scope to consider multiplicative stochasticity for perception errors in 

variables describing choice alternatives as well.  



42 

 

ACKNOWLEDGEMENTS 

We benefited from discussions with Partha Chakroborty on the empirical model specification and 

the behavioural appeal of multiplicative specification for perception errors. We are thankful to 

Kanagaraj et al. (2015) for making the empirical data available to the research community. Two 

anonymous reviewers provided valuable comments on an earlier manuscript.  

Appendix A. Estimation of the Proposed Mixed Logit Model with Multiplicative Errors 

The parameters of the proposed model can be estimated using the MSL approach. To do so, 

building on Eq. (3) for the likelihood expression for a driver q ’s manoeuvring choice, the 

likelihood expression for a sample of independent observations ( 1,2,..., )q Q=  may be written as: 

 ( ) 
1 1 , ,

( , ) ,
qi

Q Q

q qi

q q i a d s

L L L


   
= = =

= =   (A.1) 

where, 1qi =  if the driver of vehicle q  chooses manoeuvring alternative i ; zero otherwise. 

Considering multiplicative perception errors, the individual likelihood term ( ),qiL    in the above 

expression may be written as below: 

 ( ) ( ) ( ), , ,
q

qi qi q q q qL L x f d


     =   (A.2) 

where, 
q  is a vector of all perception error terms ( 1,2,..., )qk k K =  corresponding to 

qx , which 

is in turn a vector of measurements of choice environment variables ( 1,2,..., )qkx k K= . And 

( ), ,qi q qL x   is the conditional likelihood function (conditioned on the values of 
q ) that the 

driver of a vehicle q  makes a manoeuvring choice i , given by the following expression: 
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 (A.3) 

The multivariate integral in the likelihood function of Eq. (A.2) may be simulated to result in the 

following simulated likelihood function as an estimator of ( ),qiL   : 
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where, r

q  is the thr  draw from the distribution of the vector 
q of perception error terms and R  is 

the total number of such draws covering the distribution of 
q . The corresponding simulated log-

likelihood function ( , )SLL    for the entire data is given in the expression below:  

 
1 , ,

( , ) ln ( , )
Q

qi qi

q i a d s

SLL SL    
= =

=      (A.5) 

To estimate parameters using the MSL method, we apply quasi-Monte Carlo simulation 

techniques to draw from the distribution of 
q  for simulating ( , )SLL   . Specifically, 400 sets of 

Halton draws (i.e., 400R = ) were used to simulate 
q . For the distributions explored for 

q  in this 

study, it was not easy to achieve convergence of the MSL parameter estimation routine when 

numerically computed gradients were used. Therefore, analytical gradients of the simulated log-

likelihood function were also coded to assist in estimation. Next, we present the expressions for 

analytical gradients of the function  ln ( , )qiSL   . 

For simplicity in notation, denote the simulated likelihood ( , )qiSL    for the driver of a 

vehicle q  choosing a manoeuvring alternative i  as qiSL . Also, rewrite Eq. (A.4) as, 
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Using the above notation, the gradient with respect to jk  of the simulated log-likelihood 

 ln ( , )qiSL    may be derived as below (derivation details are available with the authors): 
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In the above expression, l  is an index for choice alternatives. qC  is the choice set for individual 

driver q . Note that the summation 
:

(.)
q lk jkl C    =

  in the above expression is useful when a 

coefficient jk  is specified to be same across a subset of choice alternatives (although it was not 

necessary to do so in this study). If  jk  is specific to only the 
thj  alternative, then the only term 

in the summation corresponds to the 
thj  alternative. And the indicator variable 1ql =  if l i= ; 

zero otherwise. That is, ql  takes a value 1 when the gradient is being taken with respect to a 

parameter of the chosen alternative. It should also be noted that when thk variable is not a stochastic 

variable, then 1r

qk =  (i.e., *

qk qkx x= ).  

The gradient with respect to k  of the simulated log-likelihood is derived as:  

 ( )
1

1

q

R
r r

qi ik jk qj

r j

r

qk qk

i

C

q

i

k

kq

x
G L L

SL R 



 

= 

    
 −       

=


   (A.7) 

Here, qC   denotes the subset of choice alternatives for which *

qkx  enters the utility function. 
r

qk

k








 is 

a partial derivative of the inverse CDF function of the distribution assumed for qk . Table A.1 

provides expressions of this partial derivative for the distributions explored in this study when their 

location parameters are set such that the expected value of the distribution is 1.  
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Table A.1 Partial derivative of r

qk  with respect to 
k  for different distributions of qk  

Distribution of qk  
r

qk

k








 

Power lognormal ( )
0

1 1 1 1/

1

/ ln1 ex( ) pr

k

r p p

qk

k

dy yu 


− −
   



   
− − −  

  
− +  


 

   

Lognormal ( )1 rr

qk k u  −  + −   

Weibull 
1/

1( 1)ln(1 )r

ku


 − − −  +−  

Rayleigh  1
2

2ln( )ru


− − −  

Exponential  ( )ln 1 1ru− −  

Fréchet 
1ln

1
r

k k

u

 

 
 − 


−


−
 

Notes: In the above expressions, 
ru is 

thr draw from a uniform [0,1] distribution.  1 .− is inverse CDF function of 

standard normal distribution. To compute the expression ( )1 1

1

/

0

ln exp
k

p

k dyy


−
  

− − 
 


 


   

  corresponding to the 

power lognormal distribution, the integral inside it and, subsequently, the partial derivative was computed numerically. 

For the Weibull distribution, partial derivative of 
r

qk  is with respect to 
k , not with respect to 

k .     
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Appendix B. Alternative Distributions Explored for Representing Drivers’ Perception Errors 

Table B.1 Alternative distributions explored for representing drivers’ perception errors 

Distribution 

name  

Density function ( )f Z  Location parameter   

when [ ] 1E Z =  

Inverse CDF function when [ ] 1E Z =  Standard deviation when [ ] 1E Z =  Notes 

Power 

lognormal 

1

ln ln
p

p Z Z

Z

 




 

−

  − −   
 −     

  

 


   

 
1 1/

1

0

ln exp( )( )p dy y −
 

− −
 
  1

1

1 1/

0

1 /e ] x[(1 () )xp ln e (p )p pu y dy − −
  
− − −   

 

 



−   ( )1

1

0

1/exp 12 ( ) 2p dyy −
 

+

− 

  
−  

0, , 0

Support:(0, )

p  −   


 

Lognormal 1 ln

Z

Z 




− 
 
 

 
2

2


−  1

2

e
2

( )xp u


 − −
+ 

 
  ( ) ( )

2
2 2exp exp exp 1

2


 

 
 − −   

 
 

0, ,

Support:(0, )

  −  


 

Weibull 1

exp
Z Z

 
  

  

−  − −    
−     

      

 

1 )1 ( 1 −− +   
1 1/

( 1)ln(1 ) 1u


   −− − +− +   
2

1 1(1 2 ) (1 )  − −  + −  +
  

 
0, 0, 0

Support:[ , )

  



  


 

Rayleigh  

2

2

e
ln1

xp
2

Z Z 







− 
 
 

 − 
−  

   

 1
2




−  
2

2ln(1 ) 1u 


 − − + −  
4

2




−
 

0, 0,

Support:[ , )

 



 


 

Exponential  2
1

exp
ln Z 

 

 
− 
 

− 
 

  
 

1 −  ln(1 ) 1u − − + −    0, 0,

Support:[ , )

 



 


 

Fréchet 1

exp
Z Z

 
  

  

− − −
− −   

−   
   

 
1

1 1



 

−  − 
 

 
1

1
ln

1
u








 
−  − 


+



−
 

2

2 2 1
1 1 for 2

otherwise

 
 

      
  − −  −       

       




 

0, , 0

Support:[ , )

  



 −   


 

Notes: This is a modified version of a similar table provided in Bhat and Lavieri (2018). Lognormal distribution is a special case of power lognormal distribution when the latter’s shape parameter p is set to 

1. Weibull distribution collapses to exponential distribution when the former’s shape parameter ( ) is equal to 1. Weibull collapses to Rayleigh when its shape parameter 2 =  and scale parameter ( )  is 

equal to 2 . Shape parameter of Fréchet distribution is denoted by  . Support for the power lognormal distribution (and lognormal distribution) is the strictly positive semifinite interval (0,∞). Support 

for Weibull, Rayleigh, Exponential, and Frechet distributions is [µ,∞), where µ is the minimum value. 
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