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ABSTRACT 
Integrated activity-based modeling (ABM) and dynamic traffic assignment (DTA) frameworks have 
emerged as a promising tool to support transportation planning and operations, particularly in the context 
of novel technologies and data sources. This research proposes an approach to characterize 
implementations of integrated ABM-DTA models, seeking to facilitate the interpretation and comparison 
of frameworks, and ultimately the selection of appropriate tools. The importance of the dimensions 
considered in this characterization is illustrated through a detailed analysis of one such aspect - the 
computation of skims. Skims are the level-of-service (LOS) metric produced by DTA models, and their 
computation may impact the performance and convergence of ABM-DTA applications. Numerical results 
from experiments on a regional ABM-DTA model in Austin, Texas suggest that skims produced at 
relatively small time steps (10-30 minutes) may lead to a faster integrated model convergence. Finer time 
grained skims are also observed to capture sharper temporal peaking patterns of the LOS. This work 
considers two skim computation methodologies; results analysis suggests that simpler techniques are 
adequate, as the inherent variability of travel times from simulation overshadows any gain in precision 
from more complex methods. This study also uses promising techniques to visualize and analyze model 
results, a challenging task in the context of highly dissagregate models that will be the subject of further 
research. The insights from this research effort can inform both, future research on the implementation of 
ABM-DTA methodologies and practical applications of existing frameworks.  
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1. INTRODUCTION 
The adoption of advanced models in transportation planning has increased significantly in the past decade. 
Activity-based models (ABM), which estimate travel demand based on daily activity patterns, allow 
planning agencies to evaluate the impacts of transportation policies that cannot be represented using 
traditional trip-based modeling approaches (see 1). From the supply side, dynamic traffic assignment 
(DTA) models (see 2) are increasingly used for their ability to both capture the variability of traffic 
conditions throughout the day and explicitly model traffic control and other traffic management strategies. 
While the incorporation of either of these models into the planning process can lead to more realistic 
modeling results, the capabilities of ABM and DTA models are better utilized when both approaches are 
integrated. Further, model integration provides consistency between travel demand and observed levels of 
service in the transportation system, leading to more meaningful analyses and conclusions. An ABM-
DTA integrated modeling approach can better answer policy questions, such as those related to (dynamic) 
congestion pricing and land-use change instruments, better than other alternative models. 

Recent research (e.g. 3, 4, 5, 6) has addressed many of the conceptual aspects of ABM-DTA 
integration. However, the nature of the results from both models leads to considerable ambiguity in the 
implementation of such concepts for operational models. The ambiguities in the integration approach are 
in addition to the complex implementation decisions required for each individual model, which are 
beyond the scope of this work but deserve careful analysis.   

No systematic study has been found in the literature concerning the impact of implementation 
aspects on the performance of integrated models, but a closer look at the computation of skims illustrates 
the importance of this topic. Skims refer to the level-of-service (LOS) measure passed from DTA models 
to ABM in many integrated frameworks, and their computation is probably one of the most ambiguous 
components of the integration process. ABMs use skims when scheduling individuals’ activities, which 
ultimately determine the travel demand on the transportation network. The computation of skims is 
relatively unambiguous in static traffic assignment (STA) models; unique link volumes at convergence  
lead to a single cost metric based on which origin-destination (OD) level-of-service may be estimated 
through shortest-path calculations. DTA model results are not as easy to process and interpret, given that 
link travel times are time-dependent, and OD travel times on any given path may vary considerably as a 
function of departure times. In this context, selecting a representative LOS for any given time period is 
more challenging, and the literature provides little guidance to support such decision.  

Skim computation is among many implementation decisions in operational integrated models that 
may benefit from systematic analysis and recommendations. This paper’s contribution is twofold: the 
authors propose a framework to characterize and compare practical ABM-DTA integrations along four 
main dimensions and illustrate the impact of one such dimension –the skim computation - on the 
convergence and performance of integrated models. Additionally, this study explores visualization 
techniques and metrics useful in the analysis of model results, addressing some of the challenges posed by 
the temporal and spatial dissagregation of ABM and DTA outcomes.  

In Section 2 we define the proposed characterization framework and use it to summarize previous 
ABM-DTA integration efforts. Section 3 further discusses the topic of skim computation in the context of 
ABM-DTA models. Sections 4 and 5 describe the methodological approach followed to illustrate the 
impact of skims computation on integrated models, and present the numerical analyses and corresponding 
results. Conclusions and further research directions are discussed in Section 5.  

 
2. ON THE INTEGRATION OF ABM AND DTA MODELS 
The literature describes two different approaches for the integration of ABM and DTA models: sequential 
and parallel. In sequential integration approaches, skims result from an equilibrium solution to the traffic 
assignment problem. Parallel modeling frameworks are exemplified in Pendyala et al. and are not the 
focus of this work, as they are often more meaningful in the context of traffic operations (5).  

Sequential models (e.g. Figure 1) have demand (ABM) and supply (DTA) components run 
independently until convergence. In every iteration of such a framework, the outputs of the demand 
model, which consist of an estimation of time-dependent travel demand on a typical day, are used as 
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inputs to the DTA module (see the movement from the CEMDAP model to the VISTA model toward the 
bottom of Figure 1). The supply component produces a representative estimate of the time-dependent 
level of service (LOS) of each transportation mode (referred to as a skim) under recurrent traffic 
conditions to be used in the following iteration of the ABM model (see the movement through the 
“interzonal travel times (skims)” box toward the top of Figure 1).  

 

 
FIGURE 1  Example of a typical sequential ABM-DTA integration framework using VISTA (DTA) and 

CEMDAP (ABM). 
 
Section 2.1 discusses previous ABM-DTA integration efforts across four dimensions: the 

temporal consistency of the integrated models, the specification of travel demand, the feedback approach 
and convergence criteria, and the computation of skims. Each of these aspects, described below, is 
considered by the authors to play an important role in the performance of the integrated models, the 
interpretation of their results, and the corresponding computational requirements.  

 Temporal consistency refers to the time period modeled by each of the integrated approach 
components. While ideally all models would represent a typical day, computational constraints often 
motivate the use of “peak period” models for the DTA component. Such models, which often consider 
only the two or three highest-congestion hours during the morning or afternoon, require planners to make 
assumptions regarding appropriate LOS values for the remainder of the 24 hour period. A possible issue 
with using inconsistent time frames is that it may limit the ability of the integrated approach to 
realistically capture shifts in travel demand between peak and off-peak periods. 

 The specification of travel demand refers to the approach used to model trips in the traffic 
assignment model based on the results of the ABM component. ABM results typically consist of tours 
which describe a sequence of trips with specific departure times between origins and destinations (OD) in 
the network. Depending on the characteristics of the assignment model, such tours may be used directly 
as an input, broken into individual origin-destination trips with departure times as specified by the ABM 
model, or aggregated to generate a coarser-level OD matrix (ranging from several minutes to the entire 
period modeled in the assignment component). While the choice of the specification approach is by large 
determined by the selected DTA package, the authors argue that the utilization of individual OD trips or 
tours is likely to lead to a more meaningful integration, in which the LOS estimated at completion is 
consistent with the activities scheduled by the ATM model. The direct use of tours is essential when 
integrating models in parallel. 
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 The feedback strategy and convergence metrics define the interaction between model 
components, and the stopping criteria for the integrated modeling approach. While the nature of the 
model interaction is unambiguous, with ABM models producing travel demand estimates and DTA 
models estimating corresponding LOS metrics, there is some flexibility in the implementation of the 
feedback process. In the context of this work, “direct feedback’ strategies are those that use DTA outputs 
from iteration i to define the ABM inputs for iteration i+1. Approaches in which the ABM inputs for 
iteration i+1 result from a combination of DTA outcomes in iterations i,i-1,…,0 are denoted “indirect 
feedback” strategies.  The method of successive averages (MSA) is a fairly common indirect feedback 
strategy (8).  Because of the nature of the weights used for the combination, MSA-type approaches tend 
to stabilize, which is not necessarily an indication of convergence. Ultimately, the selection of a feedback 
strategy is closely related to the corresponding convergence metrics. To the author’s knowledge, there is 
not an analytical formulation of an integrated ABM/DTA model, or a formal description of what 
equilibrium involves. A fixed-point type approach is typically adopted in practically implemented 
frameworks, seeks consistency of input and outputs in successive iterations (3). In this context 
convergence is measured based on the change in either skims or OD trips. Most of the approaches in the 
literature define convergence based on the stability of skims, and use percent-root-mean-squared-error or 
similar measures as the corresponding metric. The authors recommended defining convergence based on 
the feedback component that’s not averaged across iterations when MSA-type methodologies are used. 

 The computation of skims lies at the core of an integrated modeling framework. In the context 
of an integrated framework, skims provide a meaningful estimate of the time-varying travel cost between 
each origin-destination pair. ABM models consider travel times when scheduling various activities, and 
the ability of DTA models to provide better estimates of such travel times is central to producing feasible 
and realistic schedules.  The authors identify three distinct decisions concerning the practical calculation 
of skims: units, time resolution, and the calculation approach within the selected resolution. In this study 
time resolution denotes the time interval at which skims are provided. Units may consist of generalized 
costs or travel times, and this study will focus on travel time skims; the use of generalized costs 
introduces additional questions that will be the subject of further research. The skim computation 
approach category includes describes alternative methodologies to produce a single representative LOS 
metric for a selected time interval, which involves temporal aggregation and assumptions regarding the 
costs on multiple used routes. The authors believe that the calculation of skims is likely to have a 
considerable impact on the convergence of the integrated model and its sensitivity, ultimately affecting 
the accuracy of model results. Section 3 provides a more detailed discussion on the proposed analysis 
dimensions. 

 
2.1 Synthesis of Earlier Studies 
Table 1 summarizes the integrated modeling systems described in the literature, and describes the more 
relevant aspects of their implementation. For brevity, a more detailed discussion of each project has been 
omitted (see 3, 4, 5, 6, 9, 10). It is interesting to note that many of the characterization aspects described 
earlier are not easily found in the previous research summaries. This suggests that focus has been placed 
on understanding the conceptual aspects of the integration, and assessing its feasibility and value. As 
ABM-DTA modeling frameworks become more used in practice, a clear and systematic approach to the 
definition of implementation characteristics is crucial to enable fair comparisons across modeling 
frameworks, the meaningful interpretation of modeling results, and the appropriate selection of modeling 
tools. 
 
 
 
 
 
 
 



Ruiz Juri, James, Jiang, Duthie, Pinjari, and Bhat   4 
 

TABLE 1 Implementation Characteristics of ABM-DTA Integration Efforts in the Literature 
 

Study 
Modeling systems Skims 

Feedback 
Strategy 

Convergence 
Metric 

ABM DTA Units 
Temporal 
resolution 

Lin et al. 
(3) 

CEMDAP VISTA 
Use link travel 
time instead of 
skims 

2.5 hours and 
higher 

MSA 
%mean 
relative error 
(PMRE) 

Hao et al. 
(4) 

TASHA MATSim Travel time 
AM, PM 
peak 

Direct  
Fixed number 
of iterations 

C10A (9) DaySim 
TRANSIM
S 

Time, 
Distance, and 
Cost 

30 minutes 
and higher 

Direct  
Not 
Described 

C10B (10) 
SACSIM 
(Daysim) 

DynusT Travel Times 30 minutes Direct  
%mean 
absolute error 
(PMAE) 

Pendyala 
et al. (5) 

OpenAMOS MALTA Travel Time 1 minute 
Parallel 
Framework 

N/A 

Ziemke et 
al. (6) 

CEMDAP MatSim No DTA-ABM Feedback Direct N/A 

 
3.THE USE OF SKIMS IN INTEGRATED ABM-DTA MODELS 
In the context of an integrated ABM-DTA model, skims are used as a representative metric of origin-
destination (OD) travel costs. While traditional traffic assignment models produce a single skim value per 
mode and modeled period, DTA models have the flexibility of providing time-varying skims for the 
“drive” mode at virtually any desired temporal aggregation.  

The characteristics of such skims are likely to vary depending on both, the approach used to 
compute them, and on the selected temporal aggregation. The following sections discuss the impacts that 
these two factors may have on the resulting skims.  This study assumes that travel time is the only 
component of travel cost. Practical applications often use a more general definition of cost which 
introduces additional ambiguity in the computation of skims; these will be addressed in future research 
efforts. 

 
3.1 Skim Computation  
There are various ways to estimate representative OD travel times based on typical DTA model results. 
The one that best represents model trends involves averaging the travel time of all travelers that depart 
within each considered time interval, and is denoted the “experienced travel time”. In Equation 1, ODሺodሻ 
is the set of all OD pairs, V୧

୭ୢሺvሻ denotes all the vehicles departing during time interval i ∈ I and t୴ is the 
corresponding travel time based on DTA model results. exp୧

୭ୢ is the experienced travel time, computed 
for each OD pair and considered time interval. Experienced travel times are available only for 
“active“ OD pairs (i.e. those with demand during the considered interval), and are not sufficient to 
provide meaningful feedback to an ABM model, as they represent a small fraction of all possible OD 
pairs. In the context of this work, the researchers used experienced travel times as a reference to estimate 
the precision of alternative skim computation approaches. 

 

௜݌ݔ݁
௢ௗ ൌ

∑ ௧ೡ
ೡ∈ೇ೔

೚೏

|௏೔
೚೏|

  
(1) 

 
 

In most integrated ABM-DTA approaches, skims are computed by calculating the time dependent 
shortest path (TDSP) for each OD pair and selected interval. Such TDSP calculations require selecting a 
departure time within the interval, and often a single point is used. The authors denote this skim 
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computation approach “fixed departure time skims” (11). In Equation 2, T୧  is the set of all discrete 
departure times within interval i, and c୨

୭ୢ is the time-dependent shortest time for a specific od ∈ OD at 
departure time j, computed using an appropriate algorithm based on the time-dependent link travel times 
produced by the DTA model. Depending on the size of the skim interval and the time-step at which the 
time-dependent link travel time are represented in the DTA model, fix୧

୭ୢ  may be more or less 
representative of average conditions. 

 
௜ݔ݂݅

௢ௗ ൌ ௝ܿ
௢ௗ		݂ݎ݋	݆ ∈ ௜ܶ    (2) 

  
With the goal of computing skims that are more representative of average traffic conditions, we 

propose an alternative approach for skim computation through sampling. Equation 3 describes the 
calculation of such skims, which involves computing several TDSP at different departure times within the 
selected interval and averaging their values. In Equation 3, K୧ ⊂T୧denotes the subset of departure times in 
T୧.  

samp୧
୭ୢ ൌ

∑ c୨
୭ୢ

୨∈୏౟

|K୧|
 (3) 

  
3.2 Skim aggregation 
The use of a single skim value per OD pair and time interval combination (ODT) implies two types of 
aggregation: temporal and across paths. This work is focused on the temporal aspect of the aggregation. 
Under equilibrium conditions, all used paths in a DTA model should have equal and minimum travel time 
(2), which leads to a unique skim per OD. Operational DTA models are usually not in perfect equilibrium 
at convergence, which is expected to have a minor impact on the resulting skims for low gap values. Non-
zero gaps are often due to the limitations of the iterative process used to solve DTA models, and to the 
discontinuities introduced by explicitly simulating capacity constraints and traffic signals, among others.  

The skim temporal aggregation is given by the time step at which skims are reported. Desirable 
aggregations in practice are constrained by both, computational and behavioral considerations.  

The behavioral assumption underlying a specific time-step choice is that decision makers can 
perceive (or are aware of) changes in typical travel times at such aggregation. While intervals smaller 
than 30 minutes may seem unrealistically detailed, even for travelers familiar with the network, the 
widespread use of technology for precise estimation of travel times may justify the use of finer time steps. 

Computationally, finer aggregation levels require more calculations and larger memory/disk 
requirements to store/transfer the resulting skims. However, we posit that these may be desirable for two 
reasons: they may better capture the “peaking” nature of travel times in real traffic networks (Figure 2b) 
and they reduce the variance associated with the reported average travel times (Figure 2a).  While part of 
this variability (which may be significant, even in well-converged networks) is inherently related to the 
explicit modeling of traffic signals and congestion propagation, the use of longer time intervals may 
introduce additional variability that is related to changes in traffic conditions within the interval. 

Figure 2b illustrates how the aggregation used for skims computation may affect both, the highest 
skim value reported for a given OD pair, and the time of day at which this peak is observed for a typical 
OD pair in the networks analyzed in Sections 4 and 5. For the same data, Figure 2a exemplifies the range 
of experienced travel times within assignment intervals, along with the corresponding skim values for the 
two sampling approaches proposed in Section 3.1.  
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FIGURE 2 Variability of experienced travel times and corresponding skim values when using a 10 minute 

aggregation (a) and of the peaking behavior of skims computed at different aggregations (b) for a typical OD 
pair.  

 
To study the effects of the temporal aggregation of skims on their ability to capture the peaking behavior 
of travel time as a proxy to their ability to capture the overall travel time pattern the researchers propose 
two indices, the “peak index”, computed as the ratio of the maximum travel time within the modeled 
period to the corresponding average travel time, and the maximum travel time index”, computed as the 
ratio of maximum skim value (across the modeled period) and the corresponding maximum experienced 
travel time. 

 
4. METHOLDOGY AND EXPERIMENTAL DESIGN 
This section describes the methodology used to assess the impact of skim computation and aggregation 
described in Section 3, and the corresponding numerical experiments. 

The integrated modeling framework is described in Figure 1, and is consistent with other 
sequential integration approaches. The DTA model component, VISTA (12) is a simulation-based DTA 
model developed at Northwestern University, and further extended at UT Austin (e.g. 13, 14, 15). Section 
4.1 provides a detailed summary of the proposed integration characteristics based on the framework 
identified earlier, and section 4.2 presents the experimental design. 

 
4.1 Model Integration 
The integration approach follows the process described in Figure 1. The ABM and DTA models represent 
the same geographic region, and they utilize a common transportation analysis zone (TAZ) structure. 
However, while the ABM model estimates 24h activity patterns, the DTA component represents only the 
a.m. peak period (6:00-9:00 a.m.) for computational convenience. Temporal consistency is maintained as 
described below. The DTA produces a DUE solution at each iteration that is used to inform the following 
ABM run. The characteristic of the proposed integration, based on the framework introduced earlier, are 
presented in Table 2. Freight and external trips (defined as those that have at least one end at the boundary 
of the modeled area) are estimated exogenously and distributed uniformly during the peak period. They 
remain constant across iterations, and are included in this study to properly represent regional congestion 
patterns. 
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TABLE 2  Implementation Characteristics Of The ABM-DTA Framework Used In This Study And 
Corresponding Data And Model Parameters 
Implementation 
aspect 

Description 

Temporal 
Consistency 

Temporal consistency across components is ensured by complementing the time-
dependent skims produced by the DTA model for the peak period with skims 
from a static model of the same region.   

Specification of 
Travel Demand 

The individual tours produced by CEMDAP are broken into origin-destination 
trips consistent with the regional TAZ structure. Trip departure times are set 
based on the schedule proposed by the ABM model. These may result in 
inconsistencies when the travel times simulated in the DTA model are longer 
than what was assumed in the ABM model, however such discrepancies are 
expected to disappear as the model moves to a fixed-point equilibrium solution. 
External trips (i.e. trips with and end at the boundary of the region), are 
generated by an exogenous static assignment model of the same area, and remain 
constant across iterations. Their temporal distribution is assumed uniform 
throughout the modeled period. Freight trips are not including in this modeling 
effort.  

Feedback Strategy This integration effort uses direct feedback of both, traffic skims and ABM 
demand. Our convergence metric is defined based on the stabilization of the trip 
table, which is expected to reflect a stabilization of activity-travel patterns.  The 
percentage root mean squared error (PRMSE) of trip matrices between 
successive iterations is used to assess convergence. 

Skim computation Skims are computed in travel time units. Various temporal aggregation and 
computation approaches are considered, as described in the experimental design 
section.  Skims are in units of time, and they are generated by evaluating the 
time-dependent-shortest-path (10) at every desired departure time.  

Data The data used in the DTA model corresponds to the regional planning network 
of Austin, TX. The roadway network used in VISTA is a refined version of the 
metropolitan planning organization’s (MPO) planning network, which was 
refined to include additional streets in selected areas and traffic control. The final 
model consists of a total of 12,480 nodes, 27,000 links and 746 signals; its 
parameters have been adjusted to realistically reflect the network conditions in 
year 2010. For the ABM component, the synthetic population for region was 
generated using PopGen (5) based on TAZ-level data provided by the MPO. 
Model results were enriched in terms of socio-demographic variables (i.e., 
variance was added to the socio-demographic characteristics leading to a non-
homogenous population) using CEMSELTS (21).    

Model Parameters The model parameters used in running the CEMSELTS and CEMDAP are based 
on the survey data collected by SCAG (Southern California Association of 
Governments). The parameters for the simulation component of the DTA model 
were adjusted based on previous modeling results for the network. The 
simulation time step was set to six seconds, a typical value for mesoscopic 
modeling approaches. For time-dependent shortest path calculations, which 
affect both the DTA convergence and the skim calculation, link travel times 
were aggregated at a five minute time step, which leads to reasonable 
computational effort while accurately depicting the evolution of congestion. The 
DTA model was run until convergence at each iteration of the integrated process. 
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4.2. Experimental Design 
Two types of numerical experiments were conducted, including a preliminary test to assess the impact of 
the skim computation approach on the precision of the resulting level-of-service (LOS) estimates. Such 
analysis involved the estimation of skims according to the two techniques described in Section 3, and a 
comparison of the resulting metrics to the “true” LOS given by݁݌ݔ௜

௢ௗ.  
 The largest component of our numerical analyses involves three separate integrated model 
implementations using 10, 30 and 60 minutes, respectively, for the temporal aggregation of the skims. 
Model data and parameters are presented in table 2, and Section 5 discuses experimental results. While 
different ABM and DTA modeling tools may exhibit different sensitivity to the skims values, the nature 
and direction of the observed impacts is likely to be consistent across applications. 
 
5.1 MODEL RESULTS 
This section begins with a general assessment of the performance of the integrated model after 
convergence. The impact of skim computation on model precision is presented in Section 5.2, while 
Sections 5.3 and 5.4 analyze the impacts of the temporal aggregation of skims on model convergence, and 
on the fidelity of the resulting temporal demand profile. 
  
5.1 General Analysis of Model Results 
The results described in this section were obtained after five iterations using a 1-hour skim aggregation. 
Overall trends were observed to be fairly similar across all tested skim aggregations. The following 
paragraphs summarize aggregate performance metrics and provide further detail on the temporal and 
spatial distribution of demand. Congestion patterns in the DTA model were found to be remarkably 
realistic based on visual inspection of model results and Google typical traffic metrics. These results are 
omitted for brevity but are available from the authors. 
 
Aggregate Performance Metrics 

The aggregate system performance metrics analyzed in this study include average origin-
destination travel times, speeds and route length. Total vehicles miles traveled and trips were also 
analyzed across iterations. The profiles for travel demand, total system travel time and vehicles miles 
traveled, computed using 15-minute intervals, are bell-shaped, as expected. The analysis of average travel 
time distribution and path lengths suggests that longer trips take place predominantly early and late during 
the peak period. This may be capturing the early departure of travelers who reside farther away from the 
location of their morning activity, as well as a preference for postponing long trips until after the peak 
hour when possible. 

The profiles described earlier were observed to remain fairly constant across iterations, and for 
different skim aggregations. This is somewhat surprising, particularly given that the travel demand for the 
first iteration was produced using uniform (i.e. constant in time) skims from a static model. The observed 
trend suggest that the time-dependency of origin-destination travel times has relatively minor effects on 
the temporal distribution of activities in this particular implementation. While this may be partly the result 
of using time-dependent values for only three hours during the day, it may also reflect the weight of other 
behavioral parameters within the ABM model. The latter is consistent with previous finding by Steed and 
Bhat (22) for recreational and shopping trips. The authors note that aggregate analysis may obscure more 
subtle changes in the results of both, ABM and DTA models. While analyzing fully dissagregate data is 
not likely to facilitate the interpretation of results, further research will study visualization and 
aggregation techniques to enhance model results interpretation.  

 
Spatio-Temporal Demand Distribution 
Figure 4 illustrates the ability of ABM models to produce different demand profiles across OD pairs in 
the network; this is a considerable improvement to the assumptions typically made in practical regional 
DTA implementations based on static OD data. In most such cases a single assumption regarding the 
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temporal demand distributions is made for all OD pairs based on available traffic counts.  However, travel 
demand profiles are likely to vary in a large geographic area, which may significantly affect the resulting 
congestion pattern. In Figure 4, origins for which the peak demand (across all possible destinations) 
occurs during the first modeled hour are observed to be those further away from the central business 
district(s), while origins peaking during the second and third hour are progressively closer to the central 
area. In Figure 3 note that some of the out-most TAZs correspond to network boundaries for which the 
travel demand profile is not provided by the ABM; these are not meaningful in the context of these 
analysis. The previous remarks are consistent with the observed travel time distributions during the three 
modeled hours; these results suggest that most of the longer trips depart during the first hour. 

 
FIGURE 4 Location of TAZs for which travel demand peaks during the 1st, 2nd and 3rd hour. Results 

correspond to the 5th iteration of the 60-minute aggregation case study, but similar patterns were observed 
across iterations and case studies.  
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5.2 Impact of skim computation approach on feedback precision 
This section compares the precision of the two skim computation approaches described in Section 3 
across different temporal skim aggregations. Precision by time interval is defined as the root-mean 
squared error (RMSE) of skim travel times (݂݅ݔ௜

௢ௗ   and ݌݉ܽݏ௜
௢ௗ) with respect to ݁݌ݔ௜

௢ௗ (Equation 5). 
AOD is the subset of OD pairs for which demand is greater than zero during the considered interval. For 
the sampled skims, time-dependent-shortest paths were sampled every 5 minutes. 
 

௜ܧܵܯܴ ൌ ඨ∑ ൫݂݅ݔ௜
௢ௗ െ ௜݌ݔ݁

௢ௗ൯
ଶ

௢ௗ∈஺ை஽

|ܦܱܣ|
 (5) 

  
Figure 5 presents the RMSE across time intervals for the two skim computation approaches 

considered in this study. The difference in precision between sampling techniques is negligible compared 
to the magnitude of the RMSE. Observed RMSE values range between 1 and 2.5 minutes and are higher 
during the middle hours of the peak period, reflecting the impacts of congestion. Travel time variability 
during uncongested intervals is likely a result of explicitly simulating the impact of traffic signals. Given 
that the difference between skim computation techniques is very similar during congested and 
uncongested periods, the use of a single TDSP to estimate skims seems acceptable.  Further research may 
explore a different approach to computing the RMSE, given that experienced travel times may not be 
representative of true average travel times for OD pairs with low demand.  

 
FIGURE 5 Precision of sampled (blue) and fixed-departure-time (red) skims by time interval 
 

5.3 Impact of Skim Aggregation on Convergence 
Table 3 presents some metrics of integrated model convergence. In this table infeasible trips are defined 
as a function of the original tour-based data produced by the ABM. Such model assumes a departure and 
arrival time for each leg of the tour, which is translated into individual OD trips in the DTA model. These 
trips depart at the time originally specified in the ABM but may arrive at a different time than expected. 
Infeasible tours are loosely defined as those for which the departure time for leg i+1 is earlier than the 
arrival time for leg i, for any leg i along the tour. 

 
TABLE 3 Summary of Convergence Metrics across Iterations 

Iteration Demand Infeasible Trips PRMSE 

1h 30min 10 min 1h 30min 10min 1h 30min 10 min 

1 655,323 655,323 655,323 3,015 3,015 3,015 --- --- --- 

2 723,940 723,241 722,282 2,340 1,959 1,732 0.197% 0.151% 0.151% 

3 727,313 726,948 725,036 1,549 1,894 1,682 0.074% 0.073% 0.076% 

4 726,507 - - 1,727 - - 0.070% - - 

5 725,274 - - 1,610 - - 0.067% - - 
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The number of infeasible trips is observed to decrease faster when smaller skim aggregations are 
used. The former is likely due to the ability of finer skims to better reflect expected conditions during 
specific time periods, and it ultimately appears to result in better convergence as reflected by the 
corresponding RMSE values.   

The total travel demand for the modeled period stabilizes at around 725,000 trips. Figure 6 shows 
the major changes in trips productions across iterations by aggregating individual origins and destinations 
metrics using a raster image. The image is created by defining a grid and computing cell-based trip 
productions/attractions. Differences at the cell level were observed to be more meaningful than changes in 
TAZ productions/attractions. The latter is likely to be a result of the variation of TAZs size in terms of 
population, employment, and area across the region. Densely populated areas, such as the central business 
district (CBD) are modeled with clusters of small TAZs. While each of those TAZs is relatively a minor 
contributor to the total change in the demand across iterations, the cluster may play an important role in 
the regional demand pattern. In this particular network, the central area exhibits the largest change 
between the first and second iteration. In subsequent iterations the magnitude of the change decreased 
considerably, and after iteration 3 changes seem to concentrate on similar areas, and the direction of the 
change oscillates across iterations.  

The observed trends, along with the RMSE values and number of infeasible trips across iterations, 
suggest that the model solution becomes fairly stable from a geographic standpoint after five iterations. 
An important observation is that there seems to be no major differences across skim resolutions. Further 
analysis of geographic and temporal patterns may provide insights into the computation of meaningful 
metrics to assess the spatial component of convergence. 

 

 
FIGURE 6 Difference in trip productions and attraction across iterations, in number of trips per raster cell. 

Values shown for iteration i are with respect to iteration i-1. 
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5.4 Impact of Skim Aggregation on Peaking Behavior 
Peak indices values were 1.010569,1.008965, and 1.00663 for skim aggregations of 10, 30 and 60 
minutes, respectively. This suggests that smaller aggregation levels are better at capturing the peaking 
behavior.  A similar trend is reflected by the maximum travel time index (0.9141633, 0.9131088, and 
0.9077024 for 10, 30 and 60 minute skims, respectively).  
 
6. CONCLUSIONS 
Modeling frameworks combining advanced models of travel demand and network assignment are 
powerful tools to assess the impacts of complex transportation planning and operation decisions. Past 
experience has shown that the implementation of such frameworks is computationally feasible, and their 
use in practice is expected to increase in coming years. Some possible applications include analyzing the 
impacts of dynamic tolls, variable speed limits, and autonomous and connected vehicles.  

While the conceptual aspects of the integration of ADM and DTA models have been addressed in 
the literature, the complexity and level of detail of the outputs of both types of models allows for multiple 
approaches to implement such concepts. To the authors’ knowledge, there has not been a systematic 
approach to characterize implementation decisions in practical ABM-DTA applications, or study their 
impacts on the resulting models. 

This contribution of this research is twofold: the authors propose a framework to characterize and 
compare practical ABM-DTA integrations along four main dimensions, and illustrate the impact of one of 
such dimensions –the skim computation - on the convergence and performance of integrated models. 
While the numerical results presented in this effort correspond to a specific case study and cannot be 
directly generalized, the observed trends and relationships are expected to be relevant to similar 
integration frameworks. 

The impact of the temporal aggregation of skims, and of the various approaches to compute them 
based on DTA model results, is explored through the detailed analysis of a regional ABM-DTA 
implementation in Austin (TX). The findings of this effort suggest that skims produced at relatively small 
time steps (10-30 minutes) may lead to a faster convergence of the integrated model and a faster reduction 
of infeasible trips. Fine grained skims were observed show sharper and more distinct “peaking” patterns. 
Results also suggest that the simplest skim computation approaches are adequate, given that the inherent 
variability of travel times within a time period overshadows any gain in precision from more complex 
methods. Integrated model solutions were observed to become fairly stable after relatively few iterations, 
with major changes to the geographic demand pattern occurring only between the first and second 
iterations. Further research is desirable to develop general guidelines for stopping criteria based on the 
stability of model outputs, including OD trip matrices and other aggregate metrics such as trip length 
distribution. Theoretical formulations of supply-demand equilibrium conditions may also lead to more 
meaningful convergence metrics.   

The integrated model was found to produce remarkably realistic network-wide speed pattern, and 
provide valuable detail concerning the geographic variability of the temporal demand pattern which 
would be challenging to obtain from data alone.  

The temporal profile of aggregate system performance metrics including average trip travel time 
and length, and vehicles miles traveled, did not change significantly across iterations or skim aggregations. 
Spatio-temporal demand patterns were also observed to remain relatively constant. Previous work by 
Steed and Bhat (22) suggests that the LOS may not be the major factor influencing trip departure time for 
some activity types, which explains this behavior to some extent. However, improved approaches to the 
visualization and analysis of model results may greatly enhance the interpretation of model results and 
may reveal more subtle trends.  This work proposed some simple visualization techniques that produced 
promising results, and further research will be conducted to refine and enhance these. Further research is 
also needed to explore the use of generalized-cost skims which explicitly account for the impact of travel 
times and toll costs. While the use of generalized costs in DTA models is fairly straightforward, 
assumptions are needed in order to estimate average travel time and monetary costs across multiple paths. 
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As ABM-DTA modeling frameworks become more commonly used in practice, a clear and 
systematic approach to the definition of implementation characteristics is crucial to enable fair 
comparisons across modeling frameworks, the meaningful interpretation of modeling results, and the 
appropriate selection of modeling tools. The insights from this research effort are expected to inform both, 
further research on the implementation of ABM-DTA methodologies, and practical implementation of 
existing frameworks.    
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