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Abstract: This study formulates and applies a joint model of annual, long-distance vacation 
destination and mode choices to simultaneously analyze the vacation destinations that a 
household visits over an entire year, along with the time and money allocations and the travel 
mode to each of the visited destinations. The proposed formulation enhances the Multiple 
Discrete-Continuous Extreme Value (MDCEV) model structure proposed by Bhat (2005, 2008) 
in several ways. First, an extended MDCEV framework is proposed to simultaneously consider 
the influence of both time and money budget constraints in household vacation travel decisions, 
as opposed to most previous MDCEV applications that consider only a single budget constraint. 
Second, the time- and money-constrained MDCEV framework of vacation destination choices is 
integrated with a multinomial logit (MNL) model of travel mode choice. The integrated 
framework recognizes that households make decisions on where to travel (i.e., vacation 
destinations) and how to travel (i.e., travel mode) in a joint fashion. Specifically, the framework 
recognizes that the vacation destinations are imperfect substitutes in that a household can 
potentially choose to visit multiple destinations over a year, while the travel mode alternatives to 
a destination are perfect substitutes in that only one mode of travel is chosen. Third, the 
proposed, time- and money-constrained MDCEV-MNL framework not only accommodates 
multiple budget constraints and a mix of imperfect and perfect substitutes in the choice set, but 
also recognizes the possibility of price variation across both imperfect and perfect substitutes. 
Finally, the paper highlights certain subtle, but important identification issues related to the 
specification of MDCEV models with multiple budget constraints. Simple normalizations are 
proposed that help with parameter identification as well as facilitate the derivation of closed form 
probability expressions. 

The proposed framework is applied to the 1995 American Travel Survey (ATS), with the 
United States divided into 210 alternative long-distance vacation destinations. A variety of data 
sources, including the 1995 Consumer Expenditure Survey are used to synthesize information on 
destination attributes, and lodging costs and other costs of vacation at each of the 210 
destinations. In addition to demonstrating the importance of the above-discussed methodological 
extensions, the empirical model provides insights into the determinants of households’ vacation 
destination and mode choices and related time and money allocation behavior. The model can be 
incorporated into a larger national travel modeling framework for predicting the national-level 
origin-destination flows for long-distance vacation travel. 

Keywords: discrete-continuous choice, MDCEV, perfect substitutes, imperfect substitutes, time 

and money budgets, multiple constraints, long-distance travel, destination choice  
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1. INTRODUCTION 

1.1 Background 

A significant portion of passenger travel miles in the United States (US) comes from long-distance 

travel, especially for leisure purposes such as vacation. Statistics from national travel surveys 
indicate that more than one half of all long-distance travel is for pleasure (BTS 2001). Further, the 

total amount of leisure travel in the nation has been increasing at a rate of at least two-fold every 

two decades (BTS 2001). The growing demand for long-distance leisure travel is expected to put 
significant pressure on the nation’s transport network. At the same time, local congestion and 

inadequate multi-modal capacity is likely to hinder long-distance travel. In addition to the 

expected growth, long distance leisure travel garners particular attention due to its impact on the 
tourism industry. According to the U.S. Travel Answer Sheet, leisure travel resulted in a total direct 

spending of $526 billion supporting 14 million jobs in 2010, with the U.S. residents logging 1.5 

billion trips in 2010 (U.S. Travel Association 2011). It is not surprising that the economy of several 
destinations thrives on tourism/leisure travel. 

 Due to the above discussed reasons, there is an increasing recognition of the need to better 

understand long-distance leisure travel patterns in the nation. From a transportation planning 
perspective, understanding the national long-distance travel flow patterns helps in assessing 

infrastructure needs and implementing appropriate policies. For instance, planning for a new modal 

network (e.g., high sped rail) across the nation requires an understanding of the long-distance travel 
flows in the nation along with the market share for different modes of travel between different 

origins and destinations. From a tourism industry standpoint, understanding the factors influencing 

where people travel for leisure can aid in: (a) taking measures to enhance the attractiveness of the 
destinations for increasing the tourism revenue, and (b) devising targeted promotional campaigns to 

specific traveler segments. 

 This paper contributes toward a better understanding of the long-distance leisure travel 
flows in the nation by formulating and applying a household-level vacation destination and mode 

choice modeling framework. The remainder of this section reviews the literature on long-

distance leisure travel analysis and positions the current work vis-à-vis existing literature. 
  
1.2 Literature Review 

Long-distance leisure travel has been studied extensively in the tourism literature, and is steadily 

gaining importance in the transport planning/modeling literature. As reviewed in Van Nostrand 
et al. (2012), most work in the transport planning/modeling field on long-distance travel can be 

categorized into: (1) Statewide travel models in the US (Horowitz 2008), (2) National travel 

models in Europe1, and (3) Inter-city travel demand analysis between specific city pairs2. An 
important end-goal of all these efforts is to estimate travel flows between different regions by 

different modes of travel. This information is used to inform various policy and investment 

initiatives.  
 A weak element of the statewide models in the US is how the inter-state trips are treated 

– as “external” or “through” trips and estimated using aggregate growth factor techniques. 

                                                 
1 These include the national model systems for Denmark (PETRA, Fosgerau, 2001), Sweden (SAMPERS; Beser and 
Algers, 2001), Holland (LMS, HCG 1990), Germany (VALIDATE; Vortsih and Wabmuth, 2007), UK, Switzerland, 
and other countries. Another example is the TRANS-TOOLS model, built for travel demand prediction in and 
between the European Union countries (see Rich et al., 2009). 
2 Koppelman and Sethi (2005), Bhat (1995), Yao and Morikawa (2005) 
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Thankfully though, given a majority (62%) of long distance trips are intrastate (Bureau of 

Transportation Statistics 2001), several state-wide models capture a majority of the long distance 
trips occurring within the state using better methods such as household/individual-level discrete 

choice models (Outwater et al., 2010; Hunt et al., 2011). However, it yet leaves about 38% of the 

remaining, inter-state trips to be estimated appropriately. This issue could be overcome by 
implementing a national level model to estimate travel across the different states in the nation (CS 

2008). However, since the completion of inter-state highway system, there has been a long paucity 

of efforts aimed at estimating nationwide long-distance travel in the US.  Recent efforts toward a 
national travel model system in the US (Ashaibor et al., 2007; Baik et al., 2008; Moeckel and 

Donnelly, 2010) are primarily based on the traditional 4-step modeling approach that is limited in 

its ability to answer to several policy questions.  
 In addition to the above identified issues, it is worth noting here that most long-distance 

travel literature and modeling practice in the transport planning arena treats leisure travel in a very 

limited fashion – generally as “visitor” trips estimated using aggregate methods. On the other hand, 
leisure travel is one of the most studied topics in tourism research, with a significant focus on 

understanding various behavioral aspects of leisure travel, including length of stay at 

destinations, monetary budget allocation, and the cognitive and attitudinal factors influencing 
destination choices. As categorized by LaMondia et al. (2009), some studies3 attempt to estimate 

the “outbound” tourism demand from one origin (e.g., a country) to multiple destinations, while 

others4 analyze the “inbound” tourism to a single destination. However, few studies analyze 
destination choices between multiple origins and multiple destinations toward developing tools 

for forecasting leisure travel flows in the nation.   
A drawback of most work in both the travel demand and tourism literature is that the 

analysis is typically limited to smaller time frames such as a day or a few weeks. However, 
analysis of the 1995 American Travel Survey data indicates that on average, a household makes 
less than 4 vacation trips over a year. Given the infrequent nature of long-distance leisure travel, 
a smaller time-frame of analysis (e.g., a day) is likely to provide a distorted picture of leisure 
travel flows in the nation. Intuitively, vacations are planned over longer time frames, as opposed 
to daily travel decisions for which shorter time frames may suffice. In this context, Eugenio-
Martin’s (2003) theoretical framework for tourism demand analysis suggests one year as 
appropriate for vacation travel analysis (also see Morley 1992).   

 To be sure, a few studies do consider longer time-frames for analyzing leisure travel. 
Most of these studies follow a sequential approach by first predicting the frequency of vacation 

trips over a given time frame and then analyzing the destination choices and other decisions 

separately for each trip (see, for example, the annual leisure travel framework of van Middlekoop 
et al., 2004 and the holiday travel module of Rich et al., 2009). A second stream of studies 

attempts a simultaneous analysis of vacation/recreational travel choices over the entire time 

frame of interest (e.g., a year). LaMondia et al. (2008), Phaneuf and Smith (2005) and Van 
Nostrand et al. (2012) belong to this category. Among these studies, as discussed in the next 

section, the paper by Van Nostrand et al. is the most relevant to the current research.  
 
 

                                                 
3 Eymann and Ronning (1997), Gonzalez and Moral (1995), DeCrop and Snelders (2004), Lise and Tol (2001), 
Haliciolgu (2008) 
4 Greenidge (2001), Garin-Munoz and Amaral (2000), Chan et al. (2005) 
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1.3 Current Research 

This paper contributes to the long-distance travel modeling literature by providing an analysis of 
American households’ annual vacation destination and mode choices. More specifically, the 
paper formulates a household-level time and money allocation model to simultaneously analyze the 
different vacation destinations that a household visits over the time-frame of a year, along with the 
time (no. of days) and monetary allocations and the mode of travel to each of the visited 
destinations.  

To model the destination choices, a Kuhn-Tucker demand model system called the Multiple 
Discrete-Continuous Extreme Value (MDCEV) framework (Bhat, 2005, Bhat 2008) is used. The 
model assumes that, over the time period of a year, households allocate a part of the total time (365 
days) and money (annual income) available with them to one or more vacation destinations so as to 
maximize the utility derived from their choices. The multiple discrete modeling framework 
recognizes that households may visit a variety of destinations over the time frame of a year and 
allocate different amounts of time and money to each vacation destination, depending on the 
destination characteristics, travel costs, and household demographic characteristics.  

The proposed time- and money-allocation formulation builds on our previous work (Van 
Nostrand et al., 2011) that involved the application of the MDCEV framework for modeling 
households’ annual vacation destination choices, however only as a time allocation framework – not 
as a time and money allocation framework. In other words, the Van Nostrand et al. framework 
considers time as the only constraint governing (or, time as the only resource needed for) long-
distance leisure travel. However, along with time, money is also essential for “consuming” 
leisure travel, and is an important constraint in governing related decisions. Households are 
typically faced with the problem of allocating limited amounts of time and money in making 
their leisure travel decisions such as whether to make vacation trip(s), which place(s) to visit 
over a certain time-frame, and how much time and money to expend on these trips. For example, 
a household may have the time to make another vacation trip but may not be able to afford the 
monetary costs of doing so. Similarly, a household may have the time to travel to an exotic, 
faraway destination but not enough money to do so. On the other hand, some households may 
simply not have the time for long vacations even if they are able to afford the expenses. In most 
cases, both time and money constraints are likely to influence the choices. Neglect of such 
constraints, when present, can lead to a confounding of the ignored constraints into the estimated 
preference structure. To address these issues, the current paper makes a significant methodological 
extension to the Van Nostrand et al. paper by simultaneously considering both time and money 
budget constraints within the MDCEV framework. This extended MDCEV framework explicitly 
recognizes that households make vacation travel decisions under both time and money 
constraints. To be sure, a handful of recent studies (Satomura et al., 2011; Castro et al., 2012; 
and Parizat and Sachar, 2010) do consider multiple budget constraints while modeling discrete-
continuous choices. The next section reviews these studies and describes how our study is 
methodologically different from these studies.  

In addition to modeling the destination choices, the time- and money-constrained 
MDCEV framework of vacation destination choices is integrated with a single discrete choice 
multinomial logit (MNL) model of travel mode choice. The integrated framework recognizes 
that households make decisions on where to travel (i.e., vacation destinations) and how to travel 
(i.e., mode of travel) in a joint fashion. An important methodological contribution of this 
framework is it recognizes that the choice alternatives comprise a combination of imperfect and 
perfect substitutes. Specifically, the destination choice alternatives are imperfect substitutes in 
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that a household can potentially chose to visit multiple vacation destinations over a year, whereas 
the mode choice alternatives for each vacation destination are perfect substitutes in that a single 
mode5 is chosen to travel to a destination. That is, the choice of one vacation destination does not 
preclude the choice of another destination at a different time in the year, whereas, for each 
destination visited, the choice of one mode precludes the choice of other modes of travel to that 
destination. The vast majority of choice modeling literature is focused on modeling consumer 
choice from a set of perfectly substitutable discrete choice alternatives, while there has been 
recent interest in modeling consumer choices of potentially multiple alternatives from a set of 
imperfectly substitutable choice alternatives. However, not much exists in the literature on 
modeling consumer choice(s) from a combination of perfect and imperfect substitutable choice 
alternatives. Only a few studies (Bhat et al., 2006; Bhat et al., 2009; Eluru et al., 2010) use joint 
multiple discrete-continuous (MDC) and single discrete choice modeling frameworks for such 
choice situations. These studies, however, do not consider multiple budget constraints. Further, 
the model formulations in these studies assume that the prices per unit consumption do not vary 
across the perfect substitutes. In the current empirical context, consideration of the differences in 
the travel prices by different modes of travel (which are perfect substitutes) is very important. 
Thus, to our knowledge, the current study is the first in the econometric literature to propose a 
discrete-continuous modeling framework for choice situations involving both imperfect and 
perfectly substitutable choice alternatives, multiple linear budget constraints, and price variation 
across all choice alternatives including perfect substitutes. 

The proposed model formulation is applied to the 1995 American Travel Survey (ATS) data 
to estimate the empirical model parameters, with the United States divided into 210 alternative 
destinations. The ATS does not contain information on the travel times and travel costs to the 
destinations visited by the respondent households. Such data on travel level of service 
characteristics and data on the characteristics of alternative destinations were compiled from a 
variety of different data sources. Further, the ATS did not collect contact information on the 
monetary costs of vacation at any of the destinations. This information, necessary to analyze 
households’ money-allocation to the different vacation destinations, was synthesized using the 1995 
Consumer Expenditure Survey (CEX) data (obtained from ICPSR, 2011). In all, a rich database was 
compiled to build an empirical model of household-level annual vacation destination choices and 
mode choices. The empirical model can fit into a larger national leisure travel modeling framework 
to forecast the leisure travel flows in the nation and mode shares under alternative demographic and 
policy scenarios. 

The remainder of the paper is organized as follows. The next section provides an overview 
of the methods used in the literature to incorporate both time and money constraints in choice 
modeling, and to accommodate perfect and imperfect substitutes in the choice alternatives. Section 
3 formulates the proposed modeling methodology. Section 4 provides an overview of the data 
sources and the additional procedures used to synthesize information on the monetary costs of 

                                                 
5 We use the term mode to refer to the primary mode of travel. It is possible that a particular trip to a destination 
involves travel by multiple modes of travel, which is not of concern in this paper. For example, one can travel by car 
to the airport, and then by air to the final destination. But the entire trip involves only one primary mode of travel 
(air mode in this example), which is the focus of this analysis. The primary modes of travel available to a household 
for traveling to a destination can be viewed as perfect substitutes. Although a household’s travel mode choices may 
vary across the different destinations it visits over a year, the mode choice alternatives for each destination are 
perfect substitutes. As we illustrate later, the 1995 ATS data suggests that even if the household visited a destination 
multiple times over a year, a single primary mode of travel has been used every time the household traveled to that 
destination. Thus, mode choice alternatives to a destination are considered as perfect substitutes. 
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vacation at each of the 210 destinations in the U.S. Empirical model estimation results and 
discussion are provided in Section 5. Section 6 concludes the paper. 

 

2 Time and Money Constraints in Consumer Choice Modeling 

Literature on incorporating multiple constraints in consumer choice analysis dates back to Becker’s 

(1965) time allocation theory. Per his formulation, households utilize time and goods purchased in 

the market (using money) to produce commodities, and consume those commodities to maximize 
the utility derived. Since both time and money are treated as resources used in producing 

commodities, both the constraints come into picture. He collapsed the two constraints into a single 

one, using “full-prices” that convert time into money based on a money-value of time and “full-
budget” that a household could potentially earn by converting all the available time into work. 

 Literature in the recreation demand area has long recognized the importance of the roles 

played by both time and money in individuals’ recreation choices (Cesario, 1976; Bockstael et al. 
1987). However, until about a decade ago, most recreation demand studies considered only the 

money budget constraint explicitly while treating time as only a price (e.g., by converting travel 

time into an equivalent monetary cost), not as an explicit constraint. Larson and Shakih (2001) were 
the first in recreation demand literature to consider both time and money budget constraints 

explicitly. They follow Becker’s (1965) full-price and full-budget approach to combine the time 

constraint with the money constraint into a single effective budget constraint. This same approach 
was used in a weekly travel demand analysis by Kockelman and Krishnamurthy (2001). Building 

on Larson and Shaikh (2001), Hanemann (2006) proposed a general framework to accommodate 

multiple linear constraints in utility maximization-based consumer choice problems, by assuming 
that different constraints can be collapsed into one single constraint. Also, see Carpio et al (2008) 

for a recent application of this approach. 

 Although the full-price and full-budget approach helps in simplifying the problem, it makes 
an implicit assumption that the different constraints are substitutable with each other. In several 

empirical situations, however, this assumption may not hold because different resources (e.g., time 

and money) cannot always be exchanged with one another. As discussed earlier, a household may 
have the time to travel to an exotic, faraway destination but money constraints may not allow 

them to do so, since the available time cannot necessarily be exchanged into money. Similarly, a 

household that can very well afford to take a vacation trip may not do so because of time 
constraints that cannot be relieved by converting money into extra leisure time. Thus, it is 

important to consider both the time and money constraints in their own right (Castro et al., 

2012), as opposed to substituting one into another.  
 The above discussed studies, in addition to assuming free exchangeability of constraints, 

solve the consumer’s direct utility maximization problem using its dual version (i.e., the cost 

minimization problem). Specifically, indirect utility functions and Roy’s identity are applied to 
derive the demand functions based on the argument that the direct utility maximization approach 

is difficult and doesn’t yield tractable demand functions. While the indirect utility method has 

been a standard approach in discrete-continuous choice modeling literature (due to Hanemann 
1984), there is emerging recognition that the direct utility approach is more closely tied to 

behavioral theory and not difficult to work with. Further, the direct utility approach is more 

transparent in its assumptions, offers a clear interpretation of parameters for consumer 
preferences, and provides better insights into identification issues (Bunch, 2009; Bhat and 

Pinjari, 2010). Thus, in this study, we use the direct utility approach to formulate and solve the 
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time and money constrained utility maximization problem. In this context, three studies of 

particular relevance are discussed below. 
 The first study is by Satomura et al. (2011) who propose a direct utility maximization 

framework for modeling multiple discrete-continuous (MDC) choices with any number of linear 

binding constraints. Specifically, they setup an incomplete demand system specification with 
constraint-specific Hicksian composite outside goods6 (one outside good for each constraint). 

Their utility specification takes the form of an additively separable Linear Expenditures System 

(LES) with no stochasticity on the utility contributions of the outside goods. This assumption 
facilitates the derivation of closed-form likelihood expressions based on Kuhn-Tucker conditions 

of optimality to solve the direct utility maximization problem with multiple constraints. Their 

empirical application involves two constraints in the context of beverage purchases – one for 
money and the other for space.  

 The second study is by Castro et al. (2012) who propose general frameworks that can be 

used to model MDC choices as both complete and incomplete demand systems. In contrast to 
Satomura et al., Castro et al. consider stochasticity on the utility contributions of all goods 

including outside goods, which leads to likelihood expressions that are multivariate integrals (of 

as many dimensions as the number of linear constraints under consideration). Our formulation 
(described in the next section) is similar to that of Castro et al. in that stochasticity is considered 

for the outside good as well. Their empirical application is on modeling weekly time-allocation 

among different leisure activities considering time and money constraints. Another contribution 
of Castro et al. is that they discuss several identification considerations necessary for parameter 

estimation in the context of MDC models with multiple constraints. They also highlight the need 

for a “deeper analysis of empirical identification and stability issues during estimation”. Thus, in 
the current paper, we probe deeper into the empirical identification issues for incomplete demand 

systems with constraint-specific Hicksian outside goods. As discussed in the next section, we 

highlight the need for additional normalizations (to what was proposed in Castro et al.) that not 
only help with parameter identification and stability during model estimation, but also help in 

achieving closed-form likelihood expressions which greatly facilitated the estimation of a large 

demand system with 210 inside goods in our empirical context. 
 The third study, by Parizat and Sachar (2010), is a significant departure from the two 

studies discussed above. Specifically, both Satomura et al and Castro et al work within the realm 

                                                 
6 An incomplete demand system is described here by contrasting it with a complete demand system. A complete 
demand system models the consumption of all goods from all possible categories of consumption. Thus, setting up a 
complete demand system requires data on the prices and consumptions of each (and every) good that can potentially 
be consumed with the available resources (e.g., money). However, in many empirical analyses, the analyst might be 
interested in studying the consumption patterns of only one category of goods (e.g., vacation destination choices 
over a year). Further, data may not be available on the consumptions and prices of each (and every) good in other 
categories (e.g., education, housing, etc.). In such situations, the analyst can setup an incomplete demand system, 
where the consumptions of only those goods in the category of interest to the analyst are modeled in a detailed 
fashion, while the expenditures for other categories of consumption are modeled in an aggregate fashion. There are 
two ways to do so: (1) A two-stage budgeting approach, where the first stage involves expenditure allocations to 
each broad category of consumption and the second stage involves detailed modeling of the consumption of goods 
in the specific category of interest, (2) A Hicksian composite outside good approach, where the expenditure 
allocation to all goods other than those of interest are pooled into one or few categories called the “outside” goods 
and the goods in the specific category of interest are finely categorized and analyzed as “inside” goods. A common 
practice is to have a single Hickisan composite outside good that aggregates all consumption “outside” the purview 
of interest to the analyst. Usually, such an outside good is “essential” in that all consumers will have consumed at 
least some of it. 



 8 

of linear prices with no initial (or fixed) costs of consuming goods. The resources (e.g., money) 

are assumed to be expended in proportion to the amount of consumption. Thus, assuming a 
constant price per unit of consumption suffices in their framework. However, Parizat and Sachar 

consider a more general framework where prices can be non-linear due to fixed costs. 

Specifically, they consider the case of daily time allocation among different leisure activities 
where participation in any activity is associated with fixed costs. The fixed costs include travel 

times, travel costs, and the cost of activity participation which is independent of the amount of 

time spent in the activity (e.g., eat out activity involves some expenditure for purchasing the 
meal). Due to such fixed costs, prices become non-linear and destroy the continuous and twice 

differentiable properties of the utility functions. Therefore, the consumer’s constrained utility 

maximization problem cannot be solved by Kuhn-Tucker (KT) conditions alone. Thus, instead of 
the KT conditions, Parizat and Sachar employ numerical search methods for locating optimal 

consumptions while considering the non-linear time and money constraints. While their problem 

setup is behaviorally appealing due to the accommodation of non-linear prices, the numerical 
approach to solving for the optimal utility is rather cumbersome. In our empirical context of 

vacation destination choices with 210 destination choice alternatives, the numerical search 

approach becomes simply impractical. Even with 12 choice alternatives (i.e., 12 different leisure 
activity types) in the empirical application, Parizat and Sachar had to make several simplifying 

assumptions (such as same setup costs for every individual) to keep the numerical search from 

blowing up computationally. Further, such empirical assumptions may, in fact, offset the benefits 
of considering non-linear pricing and multiple constraints.7 Besides, a purely numerical approach 

(ignoring KT conditions) to locating the optimal point loses sight of the insights one can obtain 

from the KT conditions. Thus, in this paper, we assume that travel costs can be amortized into a 
constant travel-price per unit of consumption (i.e., travel price per unit time allocation to the 

destination). That is, the travel costs are treated as variable with the amount of consumption with 

a constant price per unit consumption. In reality, however, the travel costs are fixed and do not 
vary linearly with the amount of time allocation at the destination. As discussed earlier, 

incorporating such fixed costs leads to non-linear and non-smooth budget constraints making it 

extremely difficult to solve the consumer’s utility maximization problem. Resolving this issue is 
beyond the scope of this paper, but a very important avenue for future research. 

 Finally, as discussed earlier, our formulation accommodates the possibility that some of 

the choice alternatives may be perfect substitutes while others are imperfect substitutes and that 
prices (of unit consumption) can vary across both imperfect and perfect substitutes, a feature that 

none of the above three studies considers. 

   
3 MODEL FORMULATION 

3.1 Choice Alternatives 

Let j be the index to represent the vacation destination alternatives available to the household, l 
be the index to represent the travel mode alternatives, and jl be the index to represent a vacation 
destination and travel mode combination. Let the U.S be divided into J number of destination 
alternatives (j = 1,2,3,…J) which can be reached by any of the L number of travel modes (l = 

                                                 
7 In the current empirical context (of vacation choices), travel times and travel costs to a destination can vary 
significantly from one individual to another, depending on the residential location of the individuals as well as the 
mode chosen for travel. Thus, we cannot make the same assumptions as in Parizat and Sachar (2010) that the fixed 
costs are same for all individuals. 
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1,2,…,L). Let 1 2( , , .., , .., )j Jt t t t=t
 

be the vector of vacation time allocations by the 

household to each of the destination alternatives j (j = 1,2,3,…,J). Considering that one can travel 

to a destination by any of the L available modes, one can expand each element jt  of t  as a sub-

vector 1 2( , ,..., )j j jLt t t  representing the vacation time allocation to destination j reached by each of 

the available L travel modes. Thus, one can expand t as  

 11 12 1 21 2 1 1(( , , .., ), ( , .., ), ..., ( , .. , .., ), .., ( , .., ) )L L j jl jL J JLt t t t t t t t t t=t , a vector of vacation 

time allocations by the household to each of the destination alternatives j reached by each of the 
travel modes l. 
 Over the time frame of a year, a household may choose to visit none, one, or more 
destinations (although not necessarily all destinations, due to time and money constraints). Thus, 
one can expect the data to exhibit imperfect substitution (hence, multiple discreteness) among 
destination choice alternatives. For the chosen destinations, however, households are observed to 
travel by a single mode of travel regardless of the number of times they visited the destination. 

Thus, if a destination j is visited, the entire time jt  
allocated for the destination would be 

allocated to only one element in the time-allocation sub-vector 1( ,.. ,.., )j jl jLt t t  for that destination 

while all other elements would be zero, exhibiting perfect substitution (hence, single 

discreteness) among mode choice alternatives. If the destination is not visited, then all elements 

of the corresponding time-allocation sub-vector would be zero. Let jl  be the index to denote the 

chosen mode of travel to a chosen destination j. Then, if a household visits the first M of the J 
destinations over a year, the time allocations to these chosen destinations by the corresponding 

chosen modes of travel can be represented as 
1 21 2( , , .., , .., )

j Ml l jl M lt t t t , where 
jjl

t  is the time 

allocated to a chosen destination j by the corresponding chosen travel mode jl . Alternatively, t  

can be expressed with each of the first M sub-vectors having only one positive element (for the 
corresponding chosen destination-mode combination) and all other zeros as: 

 ( )
1 21 2(0,.., ,.., 0), (0,.., ,.., 0),.., (0,.., ,.., 0),.., (0,.., , .., 0), (0,.., 0,.., 0),.., (0,.., 0,.., 0) .

j Ml l jl Mlt t t t

 Pictorially, we represent the destination and mode choice alternatives available to a 
household over the time frame of a year as follows, where the upper level tree represents the 
vacation destination choice alternatives with multiple discreteness and the lower level trees 
represent the mode choice alternatives available to each destination with single discreteness: 
 
 
 
 
 
 

 

 

 

 

3.2 Model Formulation for Choice Situations with Imperfect Substitutes Only 

In this section, we outline the time- and money-constrained model formulation for choice 
situations with alternatives that are imperfect substitutes. To suit the current empirical context, 

1 2 … j J

1,2,…l,…,L 1,2,…l,…,L 1,2,…l,…,L 1,2,…l,…,L 1,2,…l,…,L 

Destinations 

Modes 
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formulation is laid out for households’ choice of vacation destinations over a year. Perfect 
substitutes are not considered temporarily. The subsequent section builds the formulation to 
consider both imperfect and perfect substitutes (i.e., both destination choices and mode choices). 
 

3.2.1 Household’s Constrained Utility Maximization Problem Formulation 

To model a household’s vacation destination choices over an annum, consider the following utility 
function (the subscript for the household is suppressed for simplicity): 

( )0 0 0 0 0 0

1

( , , ) ln ( / ) 1 ( / ) ( / )
J

j j j j

j

U t e t t e
α ρψ γ γ ψ α φ ρ

=

= + + +∑t     (1) 

In the above utility function, the first term represents the utility accrued due to vacation. 

Specifically, the term ( )ln ( / ) 1
j j j j

tψ γ γ +  is a sub-utility function representing the utility accrued 

due to spending 
jt  amount of time to a vacation destination j. Further, utility is assumed to be 

additively separable in that the total utility from vacation over the time frame of a year is the sum of 
the utility accrued from the time spent at all the vacation destinations j (= 1, 2, …, J) over the year.  

 The second and third terms in Equation (1), 0 0( / )tαψ α and 0 0( / )eρφ ρ  complete the utility 

function to form an incomplete demand system with the time- and money-specific Hicksian 

composite outside goods, respectively. Specifically, 0t  is the Hicksian composite outside good for 

time representing all the non-vacation time in a year (i.e., 365 days – annual number of days spent 

on vacation) and 0e  is the Hicksian composite outside good for money (i.e., income – annual 

expenditure on vacation). The presence of these terms recognizes that neither all the time available 
to a household (i.e., an entire year) nor all the money (i.e., annual income) is spent completely on 
vacation. Thus, both the outside goods are assumed to be “essential” with some positive 
consumption by all households. 

 
jψ  is the baseline marginal utility parameter (i.e., marginal utility at zero time allocation) 

for the vacation destination j. 
jγ  is a translation parameter that allows the possibility of a corner 

solution (i.e., zero consumption) for vacation destination j, and accommodates differential 
satiation effects (i.e., diminishing marginal utility with increasing time allocation) across 

different destinations. The terms 0ψ  and 0φ  represent the baseline marginal utility parameters, 

while α  and ρ  are the satiation parameters for the two Hicksian composite outside goods 0t  and 

0e , respectively. 

 Households are assumed to allocate the annual time (T) and income (E) available to them to 
maximize the utility in Equation (1) subject to the following two constraints: 

0

1

J

j j

j

q t t T
=

+ =∑             (2) 

0

1

J

j j

j

p t e E
=

+ =∑            (3)  

These equations represent the time and money constraints, respectively, with 
jq  and 

jp  

representing the time-prices and money-prices, respectively, of spending unit time at a vacation 
destination j. As can be observed from the two constraints, the Hicksian composite outside good for 
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time ( 0t ) is assumed to have unit time-price and zero money-price (i.e., it doesn’t appear in the time 

constraint), while the money-specific outside good ( 0e ) has unit money-price and zero time-price 

(i.e., it doesn’t appear in the money constraint). 
 
3.2.1 KT Conditions for Constrained Utility Maximization  

To solve the above described utility maximization problem, one can form a Lagrangian function as: 

0 0 0 0

1 1

( , , )
J J

j j j j

j j

L U t e q t t T p t e Eλ µ
= =

   
= + + − + + −   

   
∑ ∑t

    (4) 

where λ  and µ  are the Lagrangian multipliers for the time and budget constraints, respectively. 

Subsequently, one can employ the following Kuhn-Tucker (KT) first-order conditions of optimality: 

*

0*

0

*

0*

0

*

*

*

*

0 since 0

0 since 0

0 if 0

0 if 0

j

j

j

j

L
t

t

L
e

e

L
t

t

L
t

t

∂
= >

∂

∂
= >

∂

∂
= >

∂

∂
< =

∂

         (5) 

The optimal time allocations and expenditures satisfy the KT conditions above and the time and 
money constraints in Equations (2) and (3). The first two conditions above result in the following 

Lagrangian multipliers: * 1

0 0t
αλ ψ −=  and * 1

0 0e
ρµ φ −= , representing the marginal utility of time and 

money, respectively. Similarly, the KT conditions for the inside goods j (= 1, 2,…, J) can be 
expressed as below: 

( )
( )

1
* *

1
* *

( / ) 1 0 if 0; 1, 2,...,

( / ) 1 0 if 0; 1, 2,...,

j j j j j j

j j j j j j

t q p t j J

t q p t j J

ψ γ λ µ

ψ γ λ µ

−

−

+ − − = > =

+ − − < = =     (6) 

or, after algebraic arrangements,  

( )

( )

1
*

*

1
*

*

( / ) 1
1 if 0 ; 1, 2,...,

( / ) 1
1 if 0; 1, 2,...,

j j j

j

j j

j j j

j

j j

t
t j J

q p

t
t j J

q p

ψ γ

λ µ

ψ γ

λ µ

−

−

+
= > =

+

+
< = =

+

     (7) 

or, after taking logarithms and substituting 1

0 0t
αψ −  and  1

0 0e
ρφ −  for the Lagrangian multipliers λ  

and  µ , respectively, 
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( ) ( )
( ) ( )

* * 1 * 1 *

0 0 0 0

* * 1 * 1 *

0 0 0 0

ln ln ( / ) 1 ln 0 if 0; 1, 2,...,

ln ln ( / ) 1 ln 0 if 0; 1,2,...,

j j j j j j

j j j j j j

t t q e p t j J

t t q e p t j J

α ρ

α ρ

ψ γ ψ φ

ψ γ ψ φ

− −

− −

− + − + = > =

− + − + < = =  (8) 

 Note that the above KT conditions are based on the gradients of the Lagrangian function 

with respect to optimal consumptions
* * * * *

0 0 1 2( , , , , ..., )Jt e t t t , not expenditures. That is, the 

consumer’s utility maximization problem is solved for optimal consumptions, not optimal 
expenditures. While the KT conditions from solving for optimal expenditures can be rearranged 
algebraically to obtain the same KT conditions as above, the problems arises when deriving the 
probability expressions for optimal expenditures. Specifically, the analyst will end up with invalid 
probability density functions when (s)he derives the probability expressions for optimal 
expenditures. Since the consumer derives utility from (and is assumed to optimize the total utility 
of) consumption, it is important to solve for optimal consumptions and derive the probability 
expressions for optimal consumptions, not for optimal expenditures. This is true even in the context 
of the MDCEV model derived by Bhat (2008) with a single budget constraint.  

3.2.2 Econometric Structure  

To complete the model specification, define the baseline marginal utility for inside goods, 
jψ  as a 

function of observed and unobserved household characteristics and destination (j) characteristics as:   

exp( )j j jψ ε′= +∆ z
          

(9) 

where, 
 

jz is a vector of destination characteristics influencing the destination choices, and their interactions 

with household characteristics, and ∆ is a corresponding vector of parameters; 

jε  is a destination-specific random term to accommodate the unobserved factors influencing the 

choice of destination j. 

 Similarly, define 0ψ  as 0exp( )ε′ +
0

v v  and 0φ  as 0exp( )ξ′ +
0

w w , where, 0
v

 
is a vector of 

household characteristics influencing annual time allocation for vacation; 0
w is a vector of 

household characteristics influencing annual expenditure allocation for vacation ( ′v and ′w are 

corresponding parameter vectors); and 0ε  and 0ξ  are random terms to accommodate unobserved 

factors influencing the total annual vacation time allocation and total annual expenditure allocation 
respectively. 
 Now, the KT conditions in Equation (8) can be written as:  

( ) ( )
( ) ( )

* * 1 * 1 *

0 0 0 0

* * 1 * 1 *

0 0 0 0

ln ( / ) 1 ln if 0; 1,2,...,

ln ( / ) 1 ln if 0; 1, 2,...,

j j j j j j j

j j j j j j j

t t q e p t j J

t t q e p t j J

α ρ

α ρ

ε γ ψ φ

ε γ ψ φ

− −

− −

′= − + + + + > =

′< − + + + + = =

∆ z

∆ z
 

(10)
 

Without loss of generality, say that the household chooses to visit the first M of the available 

vacation destinations j (= 1,2,…, M) over a year. Assume that the random terms 
jε  (j = 1,2,…,J), 

and 0ε  and 0ξ   are independent and identical type-1 extreme value distributed with a scale 

parameter σ . Then, conditional upon the error terms 0ε  and 0ξ ,  the conditional probability 

expression that the household allocates T-to amount of time for vacation ( or *

0t  amount of time for 
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the time-specific outside good),  E- e0 amount of money for vacation (or *

0e amount for the money-

specific outside good), and
* *

1( , .., , 0, ..., 0 )Mt t
 

amounts of time to each of the J vacation 

destinations is: 

( ){ }* * * * *

0 0 1 2 0 0

0 0 0 0

0 0

1 1

, , , ..., ,0,...,0 | ,

| , | ,1
/ ,

M

M J
j j

j j M

P t e t t t

W W
g J G

ε ξ

ε ξ ε ξ
ε ξ

σ σ σ= = +

         
= ×      
         
∏ ∏

    (11) 

In the above expression, the first term corresponds to all chosen destination alternatives, while the 
second term corresponds to all non-chosen destination alternatives. Further, the terms in the 
expression are as below: 

( ) ( )* * 1 * 1

0 0 0 0 0 0| , ln ( / ) 1 ln
j j j j j j

W t t q e pα ρε ξ γ ψ φ− −′= − + + + +∆ z ,  

g and G are standard Gumbel probability density and cumulative density functions, and 

0 0/ ,J ε ξ  is the determinant of the Jacobian matrix for transformation of variables from the random 

error terms to consumption (i.e., time allocation) variables for the chosen destination-mode 
alternatives. There is no compact form for the Jacobian, but the ihth element of the Jacobian matrix 
can be computed as follows:  

*

* 2 * 2

0 0 0 0

** 1 * 1

0 0 0 0

/ ( 1, 2,..., )

(1 ) (1 )

( )

ih i h

i h i h ih

i ih h

J W t i M

t q q e p p Z

tt q e p

α ρ

α ρ

ψ α φ ρ
γψ φ

− −

− −

= ∂ ∂ =

− + −
= +

+ + 
    (12)

 

where,  
i(= 1,2,…,M) and h(=1,2,…,M) are the row and column indices, respectively for each chosen 
vacation destination alternative;

 1 if , and 0 otherwise;ihZ i h= =

 
,i hq q are the time-prices for the destinations i and h, respectively; and 

,i hp p are the money-prices for the destinations i and h, respectively. 

The unconditional probability for the expression in Equation (11) is given by integrating it over the 

distributions of the random terms 0ε  
and 0ξ , as: 

( ){ }

0 0

* * * * *

0 0 1 2

0 0 0 0 0 0
0 0 0 02

1 1

, , , ,..., ,0,...,0

| , | ,1 1
/ ,

M

M J
j j

j j M

P t e t t t

W W
g J G g g d d

ε ξ

ε ξ ε ξ ε ξ
ε ξ ε ξ

σ σ σ σ σ σ

∞ ∞

= = +=−∞ =−∞

=

       × × ×       
      

∏ ∏∫ ∫
  

             
           (13) 

The above double integral does not have a closed form, but can be evaluated either using either 
simulation or quadrature methods.  
 The reader will note that the above probability expression is similar to what Castro et al. 
(2012) proposed for the case of MDCEV models with multiple linear constraints with constraint-
specific Hicksian composite outside goods in that it is a double integral. In a general case with R 
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number of linear constraints, the above approach leads to a probability expression of R-dimensional 
integral (Castro et al., 2012). In the following discussion, we highlight certain identification issues 
specific to empirical contexts with constraint-specific Hicksian composite essential outside goods 

(i.e., outside goods 0t  
and 0e , each of which are specific to the time and money constraints, 

respectively) that warrant a different formulation leading to a different model structure. 
 
3.2.3 Identification Issues 

First, as discussed in Castro et al. (2012), it is difficult to estimate alternative-specific parameters of 

explanatory variables separately on the baseline utility parameters for inside goods (i.e., 
jψ ) as well 

as those for outside goods (i.e., 0ψ  and 0φ ). Thus, for each explanatory variable, the corresponding 

coefficients in the baseline utility parameters for at least as many goods as the number of budget 
constraints need to be normalized (to zero). In the current empirical context, the baseline utility 
parameters of the two outside goods are the natural candidates for such normalization. This is 
because, once the consumptions of the inside goods are known, the consumptions of the constraint-
specific outside goods are automatically implied from the corresponding budget constraints. In other 
words, only the inside good consumptions are the decision variables of any household’s utility 

maximization problem. The “leftovers” for the constraint-specific outside goods (i.e., 0t  
and 0e ) can 

be obtained from the budget constraint identities in Equations (2) and (3).  
 Second, for the same reasons just discussed, it is difficult to identify the baseline utility 

parameters 0ψ
 
and 0φ separately. Thus, another important normalization is to set the baseline utility 

parameters of all the constraint-specific outside goods as equal. In the current empirical context, 

0 0ψ φ= . While the former normalization has been discussed in Castro et al. (2012) and is applicable 

regardless of the presence/absence and the nature of the outside goods, the latter normalization is 
equally important in situations with constraint-specific Hicksian composite outside goods.8 
Neglecting this normalization can potentially lead to severe estimation problems. To better explain 
this, Figure 1 below illustrates the identification issues arising in absence of such normalization for 

the following utility expression with one inside good int  
and two constraint-specific outside goods 

0 0 and t e : 

( )0 0 0 0 0 0( , , ) ln ( / ) 1 ( / ) ( / )in in in in inU t t e t t eα ρψ γ γ ψ α φ ρ= + + +      (14) 

subject to the constraints: 0int t T+ =
 
 and 0in inp t e E+ = , where T is the time budget set to 365, E is 

the money budget set to 100, inp
 
is the price for the inside good set to 0.2, inψ  is the baseline utility 

parameter for the inside good set to 5, inγ  is the translation parameter for the inside good set to 0.64. 

The figure shows the profiles for the total utility ( )0 0, ,inU t t e  as a function of the consumption of 

                                                 
8 These two normalizations are overlapping but not equivalent to one another. For example, the former 

normalization ensures that the deterministic components of  0ψ
 
and 0φ   

are equal but the random terms 0ε  
and 0ξ  

are still different, which leads to the double integral for the likelihood function as in Castro et al. (2012). Similarly, the 
latter normalization does not ensure that the coefficients of explanatory variables on the baseline utilities of the outside 
goods have to be normalized to zero.  
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inside good ( int )9 for four different cases with distinct sets of values for the baseline utility 

parameters of the outside goods, 0ψ
 
and 0φ . The α  and ρ  parameters are both fixed to zero in the 

first three cases, while they take the values of 0.1 and 0.4, respectively in the fourth case. All other 

parameters (T, E,
 inp , inψ , inγ ) are the same in all four cases. As can be observed from the first three 

cases, the utility curves for all cases follow each other closely, reflecting that different sets of 
baseline utility parameters for the outside goods can result in a similar utility profile. In addition, the 

optimal consumption values for the inside good (i.e., the int  
values where the utility curves peak) are 

very close to each other, if not exactly the same, in all three cases. Note that 0ψ
 
= 0φ  

in case 3, 

suggesting that, keeping all else same, a set of different 0ψ
 
and 0φ   

parameters can be replaced with 

a single value while retaining a similar utility profile and optimal consumptions. These results point 

to the difficulty of identifying 0ψ
 
and 0φ   

separately and suggest the need for setting 0ψ
 
= 0φ .10 
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Figure 1. Total Utility as a Function of Inside Good Consumption for different values of 

0 0, , , and ψ φ α ρ  (keeping all else same) 
11

 

 

                                                 
9  For a given consumption int  

of the inside good, the outside good consumptions are implied automatically from the 

budget constraints. 
10 Additional exercises with different sets of parameters in the above-discussed 3-good utility function suggested the 
same identification issues. Further experiments with 4-good utility functions (with two-dimensional utility surfaces as a 

function of the consumptions of the two inside goods) also suggested that multiple sets of 0ψ
 
and 0φ   

values can lead to 

similar utility profiles and optimal consumptions. 
11 The figure presents a “zoom-in” of the utility curves for inside good consumption values ranging from 20 to 100. 
Utility profiles over the entire consumption range for the inside good (i.e., 0 to 365) make it very difficult to 
distinguish the four curves from one another.  
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 Third, the satiation parameters for the outside goods, α  and ρ  are also difficult to estimate, 

because the quantities of the Hickisan composite outside goods 0t  
and 0e  

are essentially determined 

based on the consumption quantities of the inside goods and the time and money budget constraint 
identities. Thus, the analyst may have to impose normalizations on the satiation parameters of the 

constraint-specific outside goods, such as 0α =  and 0ρ = , for parameter identification and 

stability in estimation. This can be observed in Figure 1 from the utility profile in case 4 (with 

0.1α =  and 0.4ρ = ), which is empirically indistinguishable from the other utility profiles (with α  

and ρ  set to zero). Further, the utility profile with the most parsimonious specification is in case 3, 

with 0ψ
 
= 0φ , 0α = and 0ρ = . This suggests that, keeping all else same, a utility profile with 

different values for 0ψ
 
and 0φ   

and non-zero values for α  and ρ  can be replaced with another 

utility profile with a single value for the 0ψ
 
and 0φ   

parameters and zero for α  and ρ . 

 Finally, as discussed in Castro et al. (2012) the scale parameter of the random error terms σ  

can always be identified and estimated (at least in theory) as long as price variation exists at least 
either in time-prices or in money-prices.  
 
3.2.4 Revised Model Structure for the Imperfect Substitutes Case 

Considering the above-discussed identification issues and corresponding normalizations, we 
propose the following revised utility form: 

( )0 0 0 0 0 0

1

( , , ) ln ( / ) 1 ( / ) ( / )
J

j j j j

j

U t e t t e
α ρψ γ γ ϕ α ϕ ρ

=

= + + +∑t ,   (15) 

Note that the baseline utility parameter 0ϕ  in the revised utility form is same for both the outside 

goods, unlike the different parameters 0ψ  and 0φ  in Equation (1). Further, to recognize that the 

coefficients of explanatory variables in the baseline utility parameters cannot be identified 

separately for the outside goods and all inside goods, we express 0ϕ  as only a function of a random 

error term as: 0 0exp( )ϕ ς= . That is, the coefficients of explanatory variables in the outside good 

baseline utility components are normalized to zero. Note that the role of the random error term 0ς  is 

not to directly capture the influence of unobserved factors on 0t  and 0e , but to induce correlations 

among the utility contributions of all inside goods due to common unobserved factors affecting the 
choice of inside goods. Similar to how the influence of observed variables cannot be estimated on 
the outside goods (i.e., it is difficult to identify the coefficients) but captured indirectly via their 
influence on the consumption of the inside goods and the budget constraints, the role of unobserved 
factors is also captured via the same mechanism.12 
 The proposed utility form in Equation (15) retains the satiation parameters for the outside 

goods α  and ρ , despite the discussions in the previous section that they cannot be estimated. The 

                                                 
12 This is a reason why several model specifications in the environmental economics literature (as well as in 
Satomura et al., 2011) specify no stochasticity on the utility contribution of outside good(s). While this 
normalization in not theoretically inappropriate, it precludes the possibility of an easy way to induce correlation 
between the utility contributions of the inside goods. Such correlation is useful for inducing greater competition 
among the inside goods. For example, it is likely that increase in price of an inside good will induce a greater shift in 
the consumption to another inside good than to the outside good(s). Thus, we prefer the specification with 
stochasticity on the outside good(s) to that without stochasticity. 
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subsequent derivations also include the terms  α  and ρ . But one can simply normalize these 

parameters to zero for identification. The utility contributions of the outside good terms then 

simplify to 0 0ln tϕ  and 0 0ln eϕ , instead of 0 0( / )tαϕ α and 0 0( / )tαϕ α . Similarly, all the subsequent 

derivations can be simplified by setting both α  and ρ
 
to zero. 

 With the reformulated utility form in Equation (15), the KT conditions from Equation (10) 
can be expressed as:  

*

0

*

0

if 0

if 0

j j j

j j j

V t

V t

ε ς

ε ς

= + >

< + =
          (16) 

where, ( ) ( )* * 1 * 1

0 0ln ( / ) 1 ln .
j j j j j j

V t t q e pα ργ − −′= − + + + +∆ z  

The above KT conditions result in the following conditional probability given the error term 0ς : 

( ){ } 0* * * * * 0
0 0 1 2 0

1 1

1
, , , ,..., ,0,...,0 |

M J
j i

M

j j M

V V
P t e t t t g J G

ς ς
ς

σ σ σ= = +

 +     +   = ×      
      

∏ ∏
 (17) 

where,  

J  is the determinant of the Jacobian matrix whose ihth element can be computed as:  

*

0

* 2 * 2

0 0

** 1 * 1

0 0

( ) / ( 1,2,..., )

(1 ) (1 )

( )

ih i h

i h i h ih

i ih h

J V t i M

t q q e p p Z

tt q e p

α ρ

α ρ

ς

α ρ
γ

− −

− −

= ∂ + ∂ =

− + −
= +

+ + 
     (18)

 

and other terms are as described earlier in the context of Equation (12). Note that the above Jacobian 
element is slightly different (and simpler) than that in Equation (12) as the outside good-specific 
baseline utility parameters are normalized to be equal and thus drop out of the above expression. 
 The unconditional probability for the expression in Equation (17) can be obtained by 

integrating it over the distribution of 0ς , which leads to a closed-form probability expression similar 

to the MDCEV probability expression Bhat (2005) derived for the case with a single linear 
constraint:13 

( ) 1* * * * *

0 0 1 2 1

1

!
1

, , , ,..., ,0,...,0 | |

1

j

i

M V

j

M MM J V

i

e M

P t e t t t J

e

σ

σ
σ

=

+

=

 
 
 =
 
+ 

 

∏

∑
    

(19)

 

 As can be observed from the above expression, imposing a normalization that the baseline 

utility parameters of both the outside goods 0ψ  and 0φ  
are equal (to 0ϕ ) helps not only in parameter 

identification but also in obtaining closed-form probability expressions that are much easier to 

                                                 
13 On the other hand, if the error term on the outside goods 0ς  is assumed to collapse on zero (i.e., no error term exists) 

and if  0α  , 0ρ , and 1, 2,...,j j Kγ ∀ =  are equal to zero, Equation (17) results in Satomura et al.’s (2011) model. 
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evaluate (compared to integrals with no closed form as in Equation 12). It is worth noting here that 
the closed form of the probability expression remains regardless of the number of linear budget 
constraints with constraint-specific Hicksian composite outside goods. Of course, these advantages 
are applicable only for cases with constraint-specific Hicksian composite outside goods. This is 
because the normalization that the baseline utility parameters of the outside goods ought to be equal 
is applicable only for the case with constraint-specific outside goods. Whether the same 
normalization is necessary (or at least innocuous) for situations with outside goods that are not 
constraint-specific outside goods and situations without outside goods is a question beyond the 
scope of this paper. See Castro et al. (2012) for model structures without imposing this 
normalization for situations without constraint-specific outside goods and situations without outside 
goods. 
 It is worth noting here that the above formulation simplifies to the standard MDCEV model 
with a single linear budget constraint (as in Bhat, 2008) when the outside good quantity 
corresponding to one of the constraints is infinity. That is, when an infinite amount of one of the 
sources (e.g., time) is available, then the corresponding budget constraint becomes unnecessary and 
the entire model formulation, including the KT conditions and the probability expression along with 
its Jacobian, collapses to the MDCEV model with a single budget constraint. 
  

3.3 Model Structure for Choice Situations with Imperfect and Perfect Substitutes 

The above-discussed model formulations are for MDC choice situations with choice alternatives 
that are imperfect substitutes. However, in many situations, choice alternatives can comprise a 
combination of imperfect substitutes and perfect substitutes. For example, in the current empirical 
context, the vacation destination choices are imperfect substitutes while the travel mode choice 
alternatives for each destination are perfect substitutes. Thus, in this section, we extend the above 
time- and money-constrained MDC model formulations for annual vacation destination choices to 
include perfect substitutes (i.e., mode choices for each of the chosen destinations) in a simultaneous 
fashion. To be sure, Bhat et al. (2006) derived a joint model formulation that considers both 
imperfect substitutes (i.e., multiple discrete-continuous choices) and perfect substitutes (i.e., single 
discrete choices) with a single linear budget constraint. However, their formulation can be used only 
for situations when the price variation across the choice alternatives is limited to imperfect 
substitutes, but not when prices vary across the perfect substitutes. In the current empirical context, 
the price variation across perfect substitutes cannot be ignored because travel costs vary 
significantly between the different modes of travel to a destination. 
 To jointly model a household’s vacation destination and mode choices over an annum, 
consider the following utility function: 

( )0 0 0 0 0 0

1 1

( , , ) ln ( / ) 1 ( / ) ( / )
J L

jl j jl j

j l

U t e t t e
α ρψ γ γ ϕ α ϕ ρ

= =

= + + +∑∑t     (20) 

The first term in the above utility function represents the utility accrued due to vacation. 

Specifically, ( )ln ( / ) 1
jl j jl j

tψ γ γ +  is the sub-utility function for destination-mode combination jl 

representing the utility accrued from allocating 
jlt  amount of time for a vacation destination j 

reached via travel mode l. 
jlψ  is the corresponding baseline marginal utility parameter, expressed 

as: exp( )jl j jl jlψ ε′ ′= + +∆ z β x , where 
jz
 

is a vector of destination characteristics and their 

interactions with household characteristics influencing destination choices, and ∆ is a corresponding 
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vector of parameters; 
jlx is a vector of mode-specific characteristics and their interactions with 

household characteristics influencing mode choice for the destination j, and β  is a corresponding 

vector of parameters; 
jlε  is a destination-mode specific random error term to accommodate the 

unobserved factors influencing the choice of destination j and mode l. 
jγ  is a destination-specific 

parameter to allow corner solutions and to accommodate differential satiation effects across 

vacation destinations. 
jγ  can be expressed as a function of destination characteristics as: 

exp( )j jγ ′= ∇ y .14  

 The second and third terms in Equation (20), 0 0( / )tαϕ α  and 0 0( / )eρϕ ρ  complete the utility 

function to form an incomplete demand system with the time- and money-specific Hicksian 

composite outside goods,  0t  
and 0e , respectively. Note that, based on the discussion in Section 

3.2.3, for identification purposes, the baseline utility parameter is specified as the same 0( )ϕ  for 

both the constraint-specific outside goods. Further, since the coefficients on the explanatory 

variables cannot be identified together for inside goods and outside goods, 0ϕ  is defined as a 

function of only a random error term as: 0exp( )ς  (i.e., for any explanatory variable in the baseline 

utility parameters, the outside good-specific coefficients are normalized to zero). α  and ρ  are the 

satiation parameters for the two Hicksian composite outside goods.  
Specifying the joint cumulative distribution F  of the random error terms 

( )0 11 1 1 1 1, ( ,.., , .., ),..., ( ,.., , .., ), ,..., ( ,.., , .., ),
l L j jl jL J Jl JL

ς ε ε ε ε ε ε ε ε ε  completes the utility specification. 

In this paper, we assume that the random error terms have a nested extreme value distributed 
error term structure with the following joint cumulative distribution: 

( )0 11 1 1 1 1

0

11

, ( ,.., ,.., ),.., ( ,.., ,.., ),.., ( ,.., ,.., )

exp exp exp exp

l L j jl jL J Jl JL

J L
jl

lj

F

θ

ς ε ε ε ε ε ε ε ε ε

ες
σ σθ==

=

  −     −      − × −      
           
∑∏

    (21) 

In the above cumulative distribution function, the error terms of all modal alternatives for a 

specific destination j, 1( ,.., ,.., )j jl jLε ε ε
 
are grouped into a nest, with a (dis)similarity parameter 

θ  introduced to capture correlations among the random utility contributions of all destination-

mode combination alternatives jl sharing a destination j. σ  is a scale parameter that can be 

estimated due to the variation in prices (either in money-prices, or time-prices, or both) across 

the choice alternatives. Note that the error term on the outside goods, 0ς  is in its own nest with 

no other alternative in it. 
 Households are assumed to allocate the annual time (T) and income (E) available to them to 
maximize the utility in Equation (20) subject to the following, time and money constraints: 

0

1 1

K L

jl jl

j l

q t t T
= =

+ =∑∑
         

(22) 

                                                 
14 

jγ  is not specified to vary by mode because there is no reason for the satiation effects to differ by mode of travel. 

Besides, constraining the 
jγ  parameter to be the same across the perfect substitutes facilitates the model formulation. 
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0

1 1

K L

jl jl

j l

p t e E
= =

+ =∑∑            (23)  

In the above constraints, 
jlq  and 

jlp  represent the time-prices and money-prices, respectively, of 

spending unit time at a vacation destination j traveled by mode l. These prices comprise two 
components – (a) destination prices that do not depend on the mode of travel (e.g., lodging prices, 
dining prices, entertainment prices, etc.) and (b) travel prices that depend on the mode of travel, 
with the latter leading to the difference between the prices by different modes of travel (l) for a same 
destination j.15 As explained earlier, the Hicksian composite outside goods have unit prices for (i.e., 
appear with unit prices in) their own constraint and zero prices for (i.e., it do not appear in) the other 
constraint. 
 To solve the above constrained utility maximization problem, one can form a Largrangian 
function as below: 

( )0 0 0 0

1 1 1 1

, ,
K L K L

jl jl jl jl

j l j l

L U t e T q t t E p t eλ µ
= = = =

   
= + − − + − −   

   
∑∑ ∑∑t

   (24) 

As described in Section 3.2.1, applying the KT optimality conditions for the outside goods results in 

the following Lagrangian multipliers: * 1

0 0t
αλ ψ −=  and * 1

0 0e
ρµ φ −= , representing the marginal utility 

of time and money, respectively. Further, the following KT conditions can be derived for the inside 
goods: 

*

0

*

0

0 0, 1,.., ; 1,..,

0 0, 1,.., ; 1,..,

jl jl jl

jl jl jl

V if t j J l L

V if t j J l L

ς ε

ς ε

− + = > = =

− + < = = =
     

(25) 

where, ( )( ) ( )1 1* * *

0 0ln / 1 ln .jl j jl jl j jl jlV t t q e p
α ρ

γ
− −′ ′= + − + − +∆ z β x  

Since the mode choice alternatives for any chosen destination are perfect substitutes, let the 

chosen mode of travel for a destination j be denoted as jl . Then the entire time allocated to the 

destination 
*

jt  would be allocated to the destination-mode alternative  jl  while no time would be 

allocated to other modal alternatives for that destination. Thus, the above KT conditions can be 
rewritten as: 

( )( ) ( )
( )

1 1

1 1

* * * *

0 0 0

* * *

0 0 0

ln / 1 ln 0 0; 1,.., ; 1,..,

ln 0 0; 1,.., ; 1,..,

j jl j j jl jl jl jl

j jl jl jl jl jl

t t q e p if t j J l L

t q e p if t j J l L

α ρ

α ρ

γ ς ε

ς ε

− −

− −

′ ′+ − + − + − + = > = =

′ ′+ − + − + < = = =

∆ z β x

∆ z β x  

             

(26)

 

                                                 
15 As discussed earlier, it is assumed here that the travel costs for each available mode of travel to a destination can 
be amortized into a travel-price per unit of consumption (i.e., travel price per unit time allocation to the destination). 
In reality, the travel costs are fixed and do not vary linearly with the amount of time allocation at the destination. But 
incorporating such fixed costs leads to non-linear and non-smooth budget constraints making it extremely difficult to 
solve the consumer’s utility maximization problem. Resolving this issue is beyond the scope of this paper, but a very 
important avenue for future research. 
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Note that unlike the KT conditions in (25), the left hand side of the first of the above KT 

conditions has the destination-level time allocation variable 
*

jt  instead of the destination-mode 

level variable 
*

jlt . This is because the entire time allocated to the destination 
*

jt  will be allocated 

to the chosen destination-mode alternative jl. On the other hand, the second condition doesn’t 

have such a term since 
* 0jlt =  for all non-chosen alternatives. Now, one can expand the above 

KT conditions for each travel mode l (=1,2,…,L) available to a destination j as below. 

( )( ) ( )
( )( ) ( )

( )( ) ( )

1 1

1 1

1 1

* * * *

1 0 1 0 1 0 1 1

* * * *

2 0 2 0 2 0 2 2

* * *

0 0 0

ln / 1 ln 0 0 1,2,...,

ln / 1 ln 0 0 1,2,...,

ln / 1 ln 0

j j j j j j j j

j j j j j j j j

j jL j j jL jL jL jL

t t q e p if t j J

t t q e p if t j J

t t q e p if t

α ρ

α ρ

ρα

γ ς ε

γ ς ε

γ ς ε

− −

− −

− −

′ ′+ − + − + − + = > =

′ ′+ − + − + − + = > =

′ ′+ − + − + − + =

∆ z β x

∆ z β x

∆ z β x

⋮

( )
( )

( )

1 1

1 1

1 1

*

* * *

1 0 1 0 1 0 1 1

* * *

2 0 2 0 2 0 2 2

* * *

0 0 0

0 1,2,...,

ln 0 0 1,2,...,

ln 0 0 1,2,...,

ln 0

j j j j j j

j j j j j j

j jL jL jL jL jL

j J

t q e p if t j J

t q e p if t j J

t q e p if t

α ρ

α ρ

α ρ

ς ε

ς ε

ς ε

− −

− −

− −

 
 
 
 
 
 
 > =  

′ ′+ − + − + < = =

′ ′+ − + − + < = =

′ ′+ − + − + <

∆ z β x

∆ z β x

∆ z β x

⋮

0 1, 2,...,j J

 
 
 
 
 
 
 = =  

 

           (27) 
As can be observed, the KT conditions are arranged into two sets – the equality conditions in the 
first set and the inequality conditions in the second set. If a destination j is chosen, only one of 
the equality conditions will hold for that destination (because mode choice alternatives are 
perfect substitutes), while L-1 of the inequality conditions will hold. Specifically, the mode 
choice alternative with the maximum value of the left hand side of the first set of conditions will 
be chosen. On the other hand, if the destination j is not chosen, then none of the equality 
conditions but all of the inequality conditions will hold. As a result, for each destination j, the 
above KT conditions can be reduced to a new set of KT conditions as below: 
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( )( )

( )
( )

( )

( )( )

1 1

1 1

11

* *

1 0 1 0 1 1

* *

2 0 2 0 2 2* *

0
1,2,...,

* *

0 0

*

1,2,...,

ln

ln
ln / 1 0 0; 1, 2,...,

ln

ln / 1

j j j j

j j j j

j j j j
l L

jL jL jL jL

j

j j j
l L

t q e p

t q e p
t Max if t j J

t q e p

t Max

α ρ

α ρ

α ρ

ε

ε
γ ς

ε

γ

− −

− −

−−

=

=

 ′ − + +
 
 ′ − + + ′ − + + − = > =
 
 
 ′ − + +  

′

′ − + +

β x

β x
∆ z

β x

β x

∆ z

⋮

( )
( )

( )

1 1

11

1 1

* *

1 0 1 0 1 1

* *

2 0 2 0 2 2 *

0

* *

0 0

ln

ln
0 0; 1,2,...,

ln

j j j

j j j j

j

jL jL jL jL

t q e p

t q e p
if t j J

t q e p

α ρ

α ρ

ρα

ε

ε
ς

ε

− −

−−

− −

 − + +
 
 ′ − + +  − < = =
 
 
 ′ − + +  

β x

β x

⋮

 

           (28) 
Note that the above KT conditions are for the imperfect substitutes (i.e., destination choice 
alternatives). Hence, the time allocation variables in the above equations do not have a subscript 
l for the perfect substitutes (i.e., mode choice alternatives). The Max […] terms in these 
conditions represent the information from all the mode choice alternatives available for a 
destination. 
 Recall from Equation (21) that the random error terms for all modal alternatives to a 

particular destination j 1( ,.. , .., )j jl jLε ε ε  follow a nested extreme value distribution as: 

( )1 2

1

( , ,..., ) exp exp /
L

j j jL jl

l

F

θ

ε ε ε ε σθ
=

  
= − −  

   
∑ . Invoking the property of Gumbel distribution 

(i.e., type-1 extreme value distribution) that the maximum of different Gumbel distributed 
random variables is another Gumbel distributed random variable, the above KT conditions can 
be re-written as:

  *

0

*

0

0 0; 1,2,...,

0 0; 1, 2,...,

j j j

j j j

H if t j J

H if t j J

η ς

η ς

+ − = > =

+ − < = =
      (29) 

where, 

( )( ) ( )*

1

ln / 1 ln exp /
L

j j j j jl

l

H t Hγ θ σθ
=

′= − + + ∑∆ z

 

  

( )11* *

0 0ln , andjl jl jl jlH t q e p
α ρ−−′= − +β x

 
jη
 

is a type-1 extreme value distributed random term with scale parameter σ . 

In the above KT conditions, the term ( )
1 to

ln exp /jll L
Hθ σθ

=∑  is analogous to the log-sum term 

in the nested logit model and carries the information from the perfect substitutes (i.e., mode 
choice alternatives) to the imperfect substitutes (i.e., destination choice alternatives). Further, 
using the above KT conditions, following the derivation of the MDCEV model in Bhat (2005), 
the probability that the household allocates to amount of time for the time-specific outside good, e0 
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amount of money for the money-specific outside good, and chooses the first M of the J destinations 

and allocates 
* * *

1 2( , , ..., )Mt t t
 
amounts of time to each of the chosen destinations may be written as: 

( ) 1* * * * *

0 0 1 2 1

1

!
1

, , , ,..., , 0,...,0 | |

1

j

i

M H

j

M MM J H

i

e M

P t e t t t Jac

e

σ

σ
σ

=

+

=

 
 
 =
 
+ 

 

∏

∑
    

(30) 

In the above expression, all elements except | |Jac  have been defined earlier. | |Jac  is the 

determinant of the Jacobian matrix which will be defined later (but very soon).  
 The conditional probability that a mode lj is chosen given that the destination j is chosen 

(i.e., 
* 0jt > ) is given by: 

( )*( | 0)
j jj j jl jl jl jl jP l t P H H l lε ε> = + > + ∀ ≠

     (31)
 

The above expression leads to a multinomial logit (MNL) type of probability given by:

( )
( )

*

1

exp /
( | 0)

exp /

jjl

j j L

jl

l

H
P l t

H

σθ

σθ
=

> =

∑
       (32)

 

 Now, the joint probability for the complete consumption pattern involving both imperfect 
substitutes (destination choices) and perfect substitutes (mode choices) is presented. The joint 
probability of the entire consumption pattern of a household is nothing but the probability that the 
household allocates to amount of time for the time-specific outside good, e0 amount of money for 
the money-specific outside good, chooses the first M of the J destinations and allocates 

* * *

1 2( , , ..., )Mt t t
 
amounts of time to each of the chosen destinations, and chooses the 

th

jl mode of 

travel to each of the jth chosen destination. The probability may be written as a product of marginal 
and conditional probabilities in the form of a joint MDCEV-MNL model as below: 

( )
( )

( )

( )

1

* * * * *

0 0 1

* * * * * *

0 0 1 2

1

1

1

, , (0,.., ,..,0),..., (0,.., ,..,0),..., (0,.., ,..,0), (0,.., 0,..,0),..., (0,.., 0,..,0)

, , , ,..., , 0,..., 0 ( | 0)

exp / !
1

| |

1 exp /

j Ml jl Ml

M

M j j

j

M

j

j

M J

i

i

P t e t t t

P t e t t t P l t

H M

Jac

H

σ

σ
σ

=

=

=

=

× > =

 
 
 

 
+ 



∏

∏

∑

( )
( )

1
1

1

exp /

exp /

j
M

jl

M L
j

jl

l

H

H

σθ

σθ
+

=

=

 
  

× 
 
  

∏
∑

  

           

(33)

 

where, 
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( )( ) ( )*

1

ln / 1 ln exp /
L

j j j j jl

l

H t Hγ θ σθ
=

′= − + + ∑∆ z

 

  

( )11* *

0 0ln , andjl jl jl jlH t q e p
α ρ−−′= − +β x

 

( )11* *

0 0ln .
j j j jjl jl jl jlH t q e p

α ρ−−′= − +β x  

The term | |Jac  in the above expression is the determinant of the Jacobian matrix obtained from 

applying change of variables calculus between the vector of stochastic terms 

1 21 2( , , ..., , ..., )
j Ml l jl M lε ε ε ε

 
for all chosen destination-mode combination alternatives and the 

corresponding vector of time allocation variables 
1 21 2( , , ..., , ..., )

j Ml l jl M lt t t t . As discussed 

earlier, the determinant of the Jacobian does not have a compact form but the ihth element of the 
matrix can be computed as below: 

0

* 2 * 2

0 0

** 1 * 1

0 0

( ) / ( , 1, 2,..., )

(1 ) (1 )

( )

i h

i h i h

h h

ih il hl

il hl il hl ih

i ihl hl

Jac V t i h M

t q q e p p Z

tt q e p

α ρ

α ρ

ς

α ρ

γ

− −

− −

= ∂ + ∂ =

− + −
= +

+ +      (34)

 

The terms 
iil

V  used in defining the Jacobian element ihJ   are defined as in the context of the 

stochastic KT conditions in Equation (25). Specifically,  

( )( ) ( )1 1* * *

0 0ln / 1 ln
i i i i iil i il il i il ilV t t q e p

α ρ

γ
− −′ ′= + − + − +∆ z β x , with the subscript ili representing the 

combination of a chosen destination i and the chosen mode of travel li to that destination. The 
subscript hlh is defined in similar fashion. 

The joint probability expression in Equation (33) can be used to form likelihoods and 
estimate the utility function parameters simultaneously for imperfect substitutes and perfect 
substitutes. The closed form of the likelihoods facilitates an easy estimation using the familiar 
maximum likelihood estimation method even in situations with large numbers of choice 
alternatives (e.g., 210 destination alternatives and 2 mode choice alternatives for each destination 

in the current empirical context). Note that even if θ  = 1 (which implies absence of correlations 

among the random utility components of the destination-mode alternatives), the 
jlH  terms 

(which are a part of the 
jH  terms) cause jointness between the marginal and conditional 

probabilities in the above expression. Further, it is important to note that the probability 

expression does not collapse to an MDCEV probability expression even if θ  = 1 and 
jγ  is the 

same across the different destination-mode alternatives sharing the same destination. This is 
because the MDCEV probability expression, despite the above restrictions, does not recognize 
that the destination-mode alternatives sharing the same destination are perfect substitutes. 
Neglecting perfect substitution between alternatives (if present) can lead to either estimation 
problems or poor model fit (even if the parameters can be estimated). This is true even in 
contexts with a single linear budget constraint and the absence of price variation across choice 
alternatives. 
 The above formulation simplifies to a joint MDCEV-MNL model with a single linear 
budget constraint when the outside good quantity corresponding to one of the constraints is infinity. 
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Consider, for example, that the household has unlimited amount of time available. Then the KT 
conditions in Equation (25) could be rewritten as: 

*

0

*

0

0 0, 1,.., ; 1,..,

0 0, 1,.., ; 1,..,

jl jl jl

jl jl jl

V if t j J l L

V if t j J l L

ς ε

ς ε

′ − + = > = =

′ − + < = = =
     

(35) 

where, ( )( ) ( )1* *

0ln / 1 lnjl j jl jl j jlV t e p
ρ

γ
−′ ′ ′= + − + −∆ z β x

 

( )( )* *

0ln / 1 (1 ) ln( ) ln( ).j jl jl j jlt e pγ ρ′ ′= + − + + − −∆ z β x
 

Note from the 
jlV ′  term above that the 

1*

0 jl
t q

α−

 term 
jlV  in Equation (25) dropped out because *

0t is 

infinity and ( 1)α − is negative (hence 
1*

0t
α−

becomes zero). Next, one can follow the same steps 

after Equation (25) and derive the following joint MDCEV-MNL probability for situations with 
a single linear budget constraint. 
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( )

( )
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1

* * * * *

0 0 1

* * * * * *

0 0 1 2

1

1

1
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j Ml jl Ml

M

M j j

j

M

j

j
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=

=

=
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 ′+

∏
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1

1

exp /
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M
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M L
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H

H

σθ

σθ
+

=
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′  
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  ′    
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(36)

 

where, 

( )( ) ( )*

1

ln / 1 ln exp /
L

j j j j jl

l

H t Hγ θ σθ
=

′ ′ ′= − + + ∑∆ z

 

  

( )*

0(1 ) ln( ) ln
jl jl jl

H e pρ′ ′= + − −β x
 

( )*

0(1 ) ln( ) ln
j j jjl jl jlH e pρ′ ′= + − −β x

 
and | |Jac′ is the determinant of a Jacobian matrix whose ihth element is: 

0

* *

0

( ) / ( , 1, 2,..., )

(1 )

( )

i h

i

ih il hl

il ih

i i

Jac V t i h M

p Z

e t

ς

ρ

γ

′ ′= ∂ + ∂ =

−
= +

+

 

Equation (36) provides the MDCEV-MNL probability expression for situations with a single budget 
constraint (money constraint in this case). It is useful to note here that the determinant of the 

Jacobian matrix | |Jac′  has a compact form as in the standard MDCEV model. 
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4 DATA 

4.1 Primary Data: The 1995 American Travel Survey (ATS) 

The 1995 ATS is the source of household-level vacation destination and mode choice data used in 
this analysis. The 1995 ATS collected information from over 60 thousand American households 
on all long-distance trips each household made over an entire year to destinations farther than 
100 miles (BTS 1995a). For each trip, the information on the purpose, mode, and destination of 
travel and other travel attributes such as the time spent (no. of days) on the trip and travel party 
size were collected. From this sample, 22,215 households reported making at least one trip over 
the year for one of the four leisure purposes – relaxation, sightseeing, entertainment, or outdoor 
recreation – by either the car mode or the air mode of travel. Out of these households, a random 
sample of 2000 households was selected for model estimation while another random sample of 
500 households was selected for model validation. 

 

4.2 Choice Alternatives 

To define the destination choice alternatives, first each of the Metropolitan Statistical Areas 
(MSAs) from each of the 48 contiguous states in the US was identified as a potential vacation 
destination. Subsequently, the remaining non-MSA area in each state was counted as a single 
destination (one non-MSA area for each state. All together, the U.S. was divided into 210 
destinations comprising 162 MSA destinations and 48 non-MSAs. For each destination, auto and 
air were considered as the two primary modes of travel. 
 

4.3 Secondary data sources 

In addition to the 1995 ATS, several secondary data sources were utilized to compile other 
required information such as: (1) the transportation level of service variables, including the travel 
times and costs between each origin–destination pair via air and auto modes, (2) lodging prices, 
and non-lodging (dining, entertainment/recreation, and other) prices at each of the 210 
destinations, (3) the destination size and attraction variables for the year 1995, including land 
area, number of employees in different sectors (leisure and hospitality, retail, etc.), total 
population, and gross domestic product, and (4) the destination climate variables, including mean 
monthly temperatures for different months in a year, miles of coastline at the destination, and the 
annual number of freezing days experienced at the destination. 

Travel distances and travel times between each origin–destination pair (210 x 210 pars) 
by the auto mode were obtained from the Microsoft MapPoint software in conjunction with its 
Mile Charter add-on (Microsoft 2009; Winwaed Software Technology 2009). Travel costs by the 
auto mode for the year 1995 were derived as a function of travel distance, average fuel efficiency 
per gallon (Grush 1998), and gasoline prices in different Census regions from the Energy 
Information Administration (EIA 1995). Travel times and costs by the air mode for the year 1995 
were obtained from the Airline Origin and Destination Survey sample provided by the BTS 
(1995b). Destination employment and population data was obtained from the BLS (1995) and the 
2000 Census data (U.S. Census Bureau 2000). Other destination data including the gross 
domestic product of the destinations were obtained from the US Bureau of Economic Analysis 
(Bureau of Economic Analysis 1995). Climate data for the destinations, including the mean 
monthly temperatures for both January and June months (i.e., winter and summer months) and 
the annual number of freezing days were obtained from the Places Rated Almanac (Savageau 
and Loftus 1997) for the year 1995. Length of coastline for each destination was obtained from 



 27 

the National Oceanic and Atmospheric Administration’s Ocean and Coastal Resource 
Management (2011).  

Gathering and assembling data from all the above sources required a significant and 
painstaking amount of effort. Details on how the above data sources were used to create the 
specific variables of interest are documented in the master’s thesis report by (Van Nostrand 
2011). Since a focus of the paper is on accommodating multiple budget constraints along with 
the price variation across the different vacation destinations and travel modes, the procedures and 
assumptions used to construct the price variables are described next. 

 

4.4 Unit Prices 

There are two types of unit prices for each vacation destination and travel mode alternative – 

time-prices and money-prices (i.e., the jlq and jlp
 
variables in the time and money constraints of 

equations (22) and (23)). For the current analysis, the time-prices ( )jlq  are considered to be unity 

in that the amount of time needed to spend one day of vacation time is equal to one day.16 The 

synthesis of money-prices ( )jlp , on the other hand, required several assumptions and significant 

data gathering and processing, as described below. 

The money-price jlp  is the monetary expenditure a household needs to incur to spend unit 

time (i.e., a day) at a vacation destination j traveled by mode l (note that the subscript for the 
household is suppressed for simplicity in notation). These prices comprise two components – (a) 
destination prices that do not depend on the mode of travel and (b) travel prices that depend on the 
mode of travel. The destination prices, in turn, have two components – (a1) lodging prices (i.e., 
lodging costs per day) and (a2) non-lodging prices (i.e., costs per day for dining, recreation, 
entertainment, etc.). The process used to synthesize the information on money-prices for each 
household to travel to each available destination by each available travel mode is described below. 

First, the lodging costs and non-lodging costs per day at each destination were 
synthesized from the 1995 Consumer Expenditure Survey (CEX) data using a two stage process. 
In the first stage, the per-day lodging costs for each household was derived using a regression 
equation relating the per-day costs to the household’s socio-demographic characteristics 
(income, household size, and residential Census region). This regression equation was estimated 
using household-level microdata on annual vacation expenditures (and the annual number of 
days spent on vacation) from the 1995 Consumer Expenditure Survey (CEX) data. Similarly, the 
per-day non-lodging costs were derived using another regression equation estimated with the 
CEX data on non-lodging vacation expenditures. Both the above mentioned regression equations 
recognize the variation in per-day costs by household characteristics. Thus, this approach 
recognizes that not every household incurs the same costs at a destination. Rather, households 
make the lodging choices and other expenditure choices according to their income and other 

                                                 
16 This makes an implicit assumption that the time spent traveling to a destination j is part of the vacation time jt . 

That is, households derive utility not only from the time spent at a vacation destination, but also from the time spent 
traveling to the destination. This is a reasonable   because traveling for vacation might not be as onerous (it might in 
fact be fun) as compared to commuting. However, doing so makes it difficult to account for the possibility that 
households tend to prefer to visit closer destinations as opposed to farther destinations. To account for such 
preferences, the mode choice utility functions incorporate the travel time to the destination (by the corresponding 
mode) as an explanatory variable. One would expect a negative coefficient on this variable. And the log-sum 
variable from the mode choice model component would feed into the destination choice component to account for 
the influence of travel times on household preferences toward the destinations. 
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characteristics. However, the regression equations do not recognize the variation in the lodging 
and non-lodging prices across the different destinations (because the CEX data does not provide 
information on which destinations were visited by the households). To accommodate the price-
variation across destinations, in the second stage, the regressed per-day costs for each household 
were scaled by a factor capturing how pricy (or less expensive) each destination is compared to 
an average destination (as measured by the median per-day costs at different destinations. To 
implement this second state strategy, the median values of lodging and other costs of vacationing 
at each of the 210 destinations were obtained from a database made available by VisitUSA.com 
(2011). The lodging prices and non-lodging prices obtained in the above manner were added up 

to obtain the destination prices. Call such destination price as jp , where j is the index for 

destination. 
Second, using the 1995 ATS data, the number of days spent at a destination were 

regressed, using an ordered logit model, as a function of the household characteristics (age of 
householder, household size, income, presence of children), distance between origin and 
destination, and an indicator if the destination is an MSA. The resulting ordered response model 
estimates were used, for each household in the estimation sample, to estimate the expected 
number of days (nj) that the household would spend at each destination (j =1,2,…,J) if the 

household visited that destination. Third, the money-price jlp  of spending a day visiting a 

destination j by mode l was computed as:
( ) ( )

j j jl

jl

j jl j jl

p n tc
p

n tt n tt
= +

+ +
, where jltc  and jltt  are the 

round trip travel cost and travel time, respectively, to travel to a destination j (from the 
household’s origin) by travel mode l. The first component of this money-price formula can be 
viewed as the destination price, while the second component can be viewed as the travel price. 
Further details on the above-described process, including the regression estimates used to 
synthesis the money-prices, are suppressed here to conserve space but available from the authors. 

But note from the formula for jlp  that the money-prices are computed assuming that the travel 

costs ( )jltc  can be amortized over the duration spent visiting a destination ( j jln tt+ ). As 

discussed earlier, formulating the model to relax this assumption and consider travel costs as 
fixed is an important avenue for further research. 
 

4.5 Sample Description 

Table 1 presents the descriptive statistics from the estimation sample used in this analysis. 
Keeping in view the space limitations, they are discussed here very briefly. Further details are 
available from the authors. 

The households in the estimation sample have an average size of 2.81 persons/household, 
householder age of 46.2 years, and an average income of $48,913 per annum. 32% of them have 
at least one child of age less than 16 years, and 14% of them have householders who are retired. 

About 52% of the households in the estimation sample made multiple long-distance 
leisure trips over a year. Further, a significant proportion (∼ 39%) of the households visited 
multiple destinations. Furthermore, a large percentage (about 79%) of households visited a 
destination (if they did so) only once. This suggests multiple discreteness (or variety-seeking) in 
households’ annual destination choices.  Even if households visited a destination more than once 
a year, a vast majority of the times (99.5% of the time in the data; not shown in the table) the 
same mode was used to travel across all the different trips made by a household to that same 
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destination. This suggests perfect substitution (or single discreteness) among the mode choice 
alternatives to a destination. The total annual household time spent on vacation ranged from a 
day to about 60 days, with an average of 9 days. The total annual vacation expenditure ranged 
from $153 to $5566 (not shown in table), with an average of $958 per household. 

The trip level characteristics suggest 84.9% of the trips in the estimation sample were by 
auto mode and the remaining 15.1% were by the air mode. The average round trip distance was 
about 1027 miles. On average, the households in the sample spent about 5 and a half days and 
about $600 on each trip.  

The last set of descriptive statistics is for the characteristics of the 210 destinations and 
level of service variables (between the 210 x 210 OD pairs) used as explanatory variables in the 
model.  
 

5 EMPIRICAL ANALYSIS 

5.1 Model Specification 

A variety of model specifications were estimated before arriving at the final empirical model. The 

estimated models and their model fit measures are shown in Table 2. For each model estimated, a 

variety of model evaluation measures, including log-likelihood (LL) at convergence, Rho-square (
2ρ ), Akaike Information Criterian (AIC), Bayesian Information Criterian (BIC), and predictive log-

likelihood (PLL) on a validation sample of 500 households, are presented. 

The first set of rows (numbered 1 to 4) is for model formulations for choice situations with 

only imperfect substitutes in the choice set. In the current empirical context, these are models for 

annual destination choice(s) without considering the mode choice to the travelled destination(s).17 

The first two of these models are standard MDCEV models with a single budget constraint as in 

Bhat (2008). The next two models consider both time and money constraints simultaneously whose 

formulations are provided in Section 3.2. Specifically, the third model does not consider the 

normalization that the baseline utility parameters of the constraint-specific Hicksian composite 

outside goods should be constrained to be equal (i.e., 0 0ψ φ= ). To be more precise, it considers the 

first normalization discussed in Section 3.2.3 that the coefficients of the explanatory variables have 

to be normalized to zero in the baseline utility parameters of the outside goods, but it allows the 

random error components of 0 0 and ψ φ
 
to be different. As a result, the likelihood function for this 

model is a double integral, as in Equation (13), approximated using numerical quadrate. For a 

variety of different sets of starting values of the parameters, the model either did not converge or 

converged to different sets of parameter estimates with covariance matrices that couldn’t be 

inverted. Besides, while the model seemed to converge (although without standard errors) when the 

                                                 
17 A challenge in modeling destination choices without simultaneously considering mode choice is in determining 
the time-prices and money-prices to alternative destinations (since the travel times and travel costs to travel to a 
destination depend on the mode of travel). Indirect utility-based discrete choice models use log-sum variables as a 
composite measure of the travel times and travel costs by all available travel modes. This approach, however, does 
not work with the proposed, direct utility-based Kuhn-Tucker (KT) model with explicit money and/or time 
constraints. This is due to the need to explicitly consider the time-prices and money-prices (that a household would 
incur to visit alternative destinations) into the time and money budget constraints of a direct-utility based KT model. 
To address this issue, we used expected time-prices and expected money-prices to travel to a destination. The 
expected time-price (or money-price) to travel to a destination is a weighted average of the time-prices (money-
prices) to travel to a destination by different modes; weighted by the probabilities of traveling by the corresponding 
modes, obtained from a separate mode choice model. Such expected time-prices and money-prices can be directly 
used in the time and money budget constraints to represent the unit prices faced by a household to travel to 
alternative destinations. 
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integral was approximated with either three or four support points for the quadrature, increasing the 

support points lead to significant instability in estimation. This experience corroborates the 

discussion in Section 3.2.3 that the model is unidentified when 0 0ψ φ≠ . The fourth model, on the 

other hand, considers the normalization discussed in Section 3.2.3 that 0 0ψ φ=  and employs the 

closed-form probability expression in Equation (19) to construct the likelihood function. This model 

converged to a same set of parameter estimates with different sets of starting values, an indication of 

appropriate parameter identification and stability in estimation. It is worth noting here that, for none 

of the seven models reported in the table, the satiation parameters on the outside goods, neither α  

nor ρ  could be estimated. Both of these parameters were fixed to zero in all cases. These results 

suggest the importance of the normalizations discussed in Section 3.2.3 for parameter identification 

and stability in model estimation.  

The second set of models (numbered 5 to 7) corresponds to the MDCEV-MNL structure 

described in Section 3.3 for choice situations with both imperfect and perfect substitutes in the 

choice set. In the current empirical context, these are joint destination and mode choice models. 

Specifically, the fifth and the sixth models consider a single budget constraint, while the last model 

considers both time and money budget constraints. The log-likelihood value of the time- and 

money-constrained model (i.e., model #7) is better than that of the time-constrained (money-

constrained) model by 428 (484) points. It can be observed from all other goodness of fit measures 

in the table (Rho-square, AIC, BIC, and predictive log-likelihood on a sample of 500 households) 

that the time- and money-constrained model performed better than the two single-constrained 

models. The same can be observed in the context of the first four models (numbered 1 to 4), where 

the time- and money- constrained model of destination choices (model #4) performed better than the 

single-constrained models (models #1 and #2). These results suggest the need to consider both the 

constraints.18  

 

5.2 Model Coefficients  

Table 3 reports the model parameter estimates from three different joint models for annual 
vacation destination and mode choices – (1) The time-constrained model (model #5), (2) The 
money-constrained model (model #6) , and (3) The time- and money-constrained model (model 
#7). As discussed earlier, the time- and money-constrained model performs better than the two 
single-constrained models in terms of model goodness of fit as well as predictive ability (log-
likelihood) on a validation sample. Thus, we use the parameter estimates from the time- and 
money-constrained model to discuss the influence of different factors on households’ annual 
destination and mode choices. Wherever appropriate, we discuss the differences in the 
interpretations from the single-constrained models. The specification of the baseline utility 

function ( jlψ ) is discussed first, followed by the specification of the translation function ( jγ ).  

The first set of variables in the baseline utility function has common coefficients across 
all destination-mode combinations (i.e., inside goods) with the outside goods as the base 

                                                 
18 A non-nested likelihood ratio test was also conducted to compare the model fit of the time- and money-constrained 
model with that of the time-constrained model. To do so, a naïve time constrained model with only constants in it (with a 
log likelihood value of -29,188) was considered as the base. The rho-square values for time-constrained model and the 
time- and money- constrained models are 0.1382 and 0.1529, respectively with respect to the naïve, time constrained 
model. The difference between the above adjusted rho-squared values is 0.0147. The probability that this difference 

could have occurred by chance is less than ( 2 0.0147 29,188)Φ − − × ×− . This value is almost zero, suggesting that 

the time- and money-constrained model has a better data fit compared to the time-constrained model. 
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category (for normalization). Among these variables, the alternative specific constant is negative 
suggesting that households spend a smaller proportion of the year (365 days) on vacation at long-
distance destinations compared to all other purposes captured in the outside goods (such as work, 
sleep, leisure activities pursued closer to the household). This is reasonable because, as suggested 
by the descriptive statistics of the model estimation data, the amount of annual time that a 
household typically spends on vacation is much less compared to the other time investments to 
be made in the year. Households with retied householder are likely to spend less time on 
vacation to long-distance destinations compared to other households. This is perhaps because of 
the physical limitations as well as financial constraints faced by such households to travel longer 
distances. The next variable, leisure employment per capita at the household location captures 
the influence of opportunities for leisure activities within a closer vicinity of the household (as 
opposed to long-distance destinations). The negative coefficient suggests that households living 
in places with greater leisure opportunities within a shorter distance are likely to spend less time 
on long-distance vacation. This result suggests higher substitution between the time spent locally 
and the time spent on long-distance vacation for households in locations with greater leisure 
opportunities. While the result is intuitive, the corresponding coefficient is not statistically 
significant when only the time constraint in considered, suggesting the need to consider the 
money constraint as well. 
  The second set of variables consists of destination-specific characteristics. The 
interpretations of these variables have reasonable and expected substantive interpretations that 
are similar to those discussed in Van Nostrand et al. (2012) who considered only the time 
constraints. Specially, MSA destinations (as opposed to Non-MSA destinations), destinations 
with greater leisure opportunities and longer coastlines, and destinations with moderate 
temperatures are more attractive to households for vacation purposes. While the substantive 
interpretations of the parameter estimates are similar across the three models, the differences in 
the magnitudes and t-statistics of the estimates are not negligible. For example, the t-statistics on 
the coefficients of the dummy variables indicating if the destination is in the same (or adjacent) 
state as the household residence are much higher in the time-constrained model compared to the 
other two models. This is because the time-constrained model doesn’t consider the influence of 
travel costs on destination choices as it ignores the influence of the money constraint (which 
incorporates travel costs) on households’ choices. Since destinations in the same or adjacent state 
as the household residence state are less expensive to travel to (when compared to other 
destinations), ignoring the money constraint lead to an over-estimated influence of the variables 
under consideration. Once the influence of travel cost is considered through the money 
constraint, the estimated influence of the dummy variables can be interpreted as the influence of 
households’ familiarity with (hence greater preference to) destinations in same or adjacent states. 
In summary, these results suggest that ignoring the influence of a constraint (when it is present) 
can lead to the cofounding of its influence into household preferences in the utility function. 
 The third set of variables is specific to the travel modes under consideration. The 
alternative specific constant has no interpretation but reflects that households have a general 
preference to travel by car even after considering the time- and money-constraints and other 
mode-specific variables in the model. The next two variables indicate if the origin (i.e., 
household residential location) is an MSA and if the destination is an MSA, respectively. As 
expected, MSA origins and destinations are more attractive for the air mode of travel than the 
non-MSA origins or destinations because of the greater access to the air travel mode in the 
MSAs. The last variable in this category is the round trip travel time by the alternative modes of 
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travel, whose negative coefficient suggests that households prefer to travel by faster modes of 
travel. In addition to its influence on mode choice, this variable helps in accommodating 
(through the log-sum variable described in the context of Equation 29) that farther destinations 
are less attractive for vacation compared to closer destinations. Note that mode-specific travel 
costs are not included as explanatory variables in the model, while the travel times are included. 
This is because the travel costs are already incorporated into the money-budget constraint 

through the money-prices ( jlp ) of travel to the destinations. Such money-prices help in 

incorporating that farther destinations are more pricy to travel to and hence less likely to be 
chosen because of the monetary constraint. On the other hand, as discussed earlier, the travel 

times were not incorporated into the time-prices ( jlq ). This is because the time-price ( jlq ) of 

allocating unit time for a destination has been set to unity assuming that traveling also 
contributes to the utility derived from vacation (in addition to the utility due to the time spent at 
the destination).19 

 The next parameter is the scale (σ ) of the error terms ( jlε ) in the baseline utility 

parameters ( jlψ ). This parameter is measure of the magnitude of the variation in the household 

preferences due to unobserved factors. The parameter was fixed to 1 in the time-constrained 
model as it could not be estimated due to the absence of price variation. In the other two models, 
the parameter could very well be estimated and is significantly different from 1. Specifically the 
estimate is 0.754 in the money-constrained model and 0.432 in the time-constrained model. 
These estimated suggest that the magnitude of variation in the household preferences due to 
unobserved factors is lower in the time- and money-constrained model than that in the two 
single-constrained models. This suggests that accounting for both the time and money constraints 
together helped in capturing a greater proportion of the variation in household preferences. 
Ignoring either of the two constraints resulted in a greater proportion of unexplained variation in 
household preferences. 

 The next parameter is the dissimilarity parameter (θ ). The estimate for this parameter is 
significantly different from 1 (in all three models) suggesting the significant presence of 
destination-specific unobserved factors inducing correlations between the baseline utility 
parameters of the destination-mode combination alternatives that share the same destination. 
Neglecting such correlations and estimating the destination and mode choice models separately 
would result in significantly inferior model fit. 
 The last set of variables is related to the translation parameters which allow for corner 
solutions as well as differential satiation effects across different vacation destinations. 
Households are likely to allocate greater amount of time for vacation destinations that are farther 
(than those that are closer). This is perhaps because it takes greater amount of time to travel to 
those destinations. Further, households might want to spend more time at a destination that is 
farther from home (if they chose to visit the destination) because it would require significant 
amount of time and money to make another visit to that destination. Larger households are likely 
to allocate more time to a vacation destination (than smaller households), if they choose to visit 

                                                 
19 In the absence of this assumption, the time-price would be equal to the time spent at the destination added to the 
time spent traveling to (and from) the destination divided by the time spent traveling. Such a time-price would 
always be greater than unity and automatically account that farther destinations are more time-pricy and hence less 
likely to be chosen compared to closer destinations. But the downside of not making the assumption is one cannot 
accommodate that traveling while on vacation can itself contribute to the utility derived from vacation. 
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the destination. Households with retired householders are likely to allocate more time to a 
destination (than other households), if they chose to visit the destination. 
 Overall, the model estimation results are all reasonable and shed light on the various 
factors influencing households’ annual vacation destination and mode choices and related time 
and money allocations. Further, the model results show that ignoring either the time constraint or 
the money constraint would lead to the confounding of the neglected constraint into household 
preferences. In addition, the time- and money-constrained model demonstrated a greater capture 
of the variation in household preferences than the models that ignored one of the two constraints. 
All these results, combined with the superior performance of the time- and money-constrained 
model (over the single constrained models) in terms of goodness of fit and predictive log-
likelihood, suggest the need to consider both time and money constraints simultaneously in 
analyzing households’ vacation travel choices. 
 

6 SUMMARY AND CONCLUSIONS 

This study formulates and applies a joint model of annual vacation destination and mode choices 
to simultaneously analyze the vacation destinations that a household visits over an entire year, 
along with the time and money allocations and mode of travel to each of the visited destinations. 
The formulation assumes that, over a year, households allocate a part of the total time (365 days) 
and money (annual income) available with them to one or more vacation destinations and make 
the mode choices in such a way as to maximize the utility derived from their choices. This 
formulation enhances the recently emerging Multiple Discrete-Continuous Extreme Value 
(MDCEV) model structure in several ways. First, an extended MDCEV framework is proposed 
to simultaneously consider the influence of both time and money budget constraints in household 
vacation travel decisions, as opposed to most previous MDCEV applications that consider only a 
single budget constraint. Second, the time- and money-constrained MDCEV framework of 
vacation destination choices is integrated with a multinomial logit (MNL) model of travel mode 
choice. The integrated framework recognizes that households make decisions on where to travel 
(i.e., vacation destinations) and how to travel (i.e., travel mode) in a joint fashion. Specifically, 
the framework recognizes that the vacation destinations are imperfect substitutes in that a 
household can potentially choose to visit multiple destinations over a year, while the travel mode 
alternatives to a destination are perfect substitutes in that only one mode of travel is chosen. 
Third, the proposed time- and money-constrained MDCEV-MNL framework not only 
accommodates multiple budget constraints and a mix of imperfect and perfect substitutes in the 
choice set, but also recognizes the possibility of price variation across both imperfect and perfect 
substitutes. Finally, in developing the above-described framework, the paper highlights and 
resolves certain identification issues related to the specification of MDCEV models with multiple 
budget constraints. Simple normalizations are proposed that not only help with model 
identification but also facilitate the derivation of closed form probability expressions for the 
proposed formulation. To our knowledge, this is the first formulation in the econometric 
literature to account for multiple linear budget constraints and price variation to model discrete-
continuous choices with a combination of perfect and imperfectly substitutable choice 
alternatives. 

The proposed modeling framework is applied to the 1995 American Travel Survey (ATS) 
data to estimate the empirical model parameters, with the United States divided into 210 
alternative long-distance vacation destinations. The ATS data provides information on the 
different vacation destinations visited (and the time spent on each vacation) by the surveyed 
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households over the time-frame of an entire year. Along with this information from the ATS 
data, a variety of other data sources, including the Consumer Expenditure Survey (CEX) are used 
to synthesize information on destination attributes, and lodging costs and other costs of vacation 
for each of the 210 destinations. The empirical analysis demonstrates the importance of 
considering both time and money budget constraints simultaneously and that of modeling both 
destination and mode choices jointly. Specifically, considering the time and money constraints 
simultaneously lead to a significant improvement of the model goodness of fit in the estimation 
sample as well as the predictive performance (as measured by predictive log-likelihood) on a 
validation sample. As importantly, analysis of the parameter estimates suggested that ignoring 
either the time constraint or the money constraint would lead to a confounding of the neglected 
constraint into household preferences. In addition, the time- and money-constrained model 
demonstrated a greater capture of variation in household preferences than the models that 
ignored one of the two constraints.  

The parameter estimates of the time- and money-constrained MDCEV-MNL model shed 
several insights into the determinants of households’ vacation destination and mode choices and 
related time allocation behavior. It could be used to analyze the influence of changes in 
household socio-demographics, transportation level-of-service (travel times and costs), and 
destination characteristics (lodging and recreational costs, and recreational opportunities) on 
household vacation travel behavior. In addition, the model can be incorporated into a larger 
national travel modeling framework for predicting the national-level origin-destination flows for 
vacation travel. Thus, in addition to providing the methodological model formulations, the study 
contributes to the long-distance travel modeling literature. 
 This study can be extended in several important directions. First, development of efficient 
forecasting procedures for the proposed formulation will enable the use of the estimated model 
for practical forecasting and policy analysis purposes. von Haefen et al. (2004) and Pinjari and 
Bhat (2010) propose efficient forecasting algorithms for discrete-continuous choices in situations 
with a single budget constraint and only imperfect substitutes in the choice set. The challenge 
will be in extending these algorithms to the proposed formulation for forecasting discrete-
continuous choices in situations with multiple budget constraints and a mix of imperfect and 
perfect substitutes in the choice alternatives. Second, the proposed formulation assumes that 
travel costs can be amortized into a constant price per unit consumption (or time allocation to the 
destination). Relaxing this assumption and treating fixed costs separately from variable costs is 
an important avenue for future research. Third, on the empirical front, the current study does not 
consider visiting friends and family as part of vacation travel (or long-distance leisure travel). 
This is because of the lack of data on social networks that influence vacation destination choices. 
Finally, from a theoretical perspective, the current formulation considers time as the only entity 
that is consumed for deriving utility during vacation. However, as long-been described in 
economic theories of time allocation (Becker, 1965; De-Serpa, 1971; Jara-Diaz, 2007), goods 
and services in the market place are also consumed to derive utility. In the current context, 
consumption of services such as movies and theme parks and commodities such as souvenirs can 
provide utility. In fact, time is invested to consume such services and commodities, which in turn 
provide utility (Becker, 1965). Considering the consumption of both time and other commodities 
will make the formulation more behaviorally realistic.  
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Table 1: Descriptive Statistics of the Estimation Data 

Household Socio-demographic Characteristics (in the estimation sample of 2000 households) 

Household size Average:  2.81 Std. Dev: 1.34 

Age of householder (years) Average:  46.2  Std. Dev. : 1.34 

Household yearly income Average:  $48,913 Std. Dev: $29,306 

Presence of Kids 38.2% 

Householder is Retired 14.0% 

Household Leisure Travel Characteristics (in the estimation sample of 2000 households) 

Number of long distance leisure trips  Average: 2.53 Std. Dev: 2.97 

     1 48.1% 

     2 or more 51.9% 

Number of destinations visited  Average: 1.59 Std. Dev: 0.93 

     1 61.1% 

     2 24.2% 

     3or more 14.7% 

Number of trips made to a destination  Average: 1.59 Std. Dev: 2.10 

     1 79.0% 

     2 or more 21.0% 

Total Annual Vacation Time (Days)    Average: 9.04 Std. Dev: 16.62 

Total Annual Expenditure on Vacation Average: $958.30 Std. Dev: $1,488.41 

Trip-level Characteristics (for 3183 leisure trips made by the 2000 households) 

Primary mode of transportation Auto: 84.9% Air: 15.1% 

Round trip Ground Distance(miles) Average: 1,027 Std. Dev:1,193 

No. of nights away from home on trip Average: 5.69 Std. Dev: 12.76 

Monetary Expenditure Average: $602.13  Std. Dev:$1,123.15 

Destination Characteristics (for 210 Destinations) 

Destination is an MSA 76.7% 

Ln (LandArea in square miles) Average: 5.92 Std. Dev: 2.88 

Leisure Employment (100’s /Sq.Mile) Average: 4.84 Std. Dev: 7.07 

Leisure Employment Per Capita Average: 0.12 Std. Dev: 0.14 

Length of Coastline (Miles) Average: 2,310 Std. Dev: 3,898 

Winter Temperature (Fahrenheit) Average: 42.3 Std. Dev: 16.53 

Summer Temperature (Fahrenheit) Average: 82.03 Std. Dev: 8.79 

Level of Service Characteristics (between 210 x 210 OD pairs)  

Highway Distance (Roundtrip) Average: 2,622 Std. Dev: 1,749 

Auto Travel Time (hours) Average: 23 Std. Dev: 12.25 

Air Travel Time (hours) Average: 4.5 Std. Dev: 2.96 

Auto Travel Cost (US dollars) Average: $154.24 Std. Dev: $105.74 

Air Travel Cost (US Dollars) Average: $437.76 Std. Dev: $301.69 
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Table 2: Goodness of Fit Measures for the Models Estimated in the Study 

 

Log-likelihood 
at model 

convergence 
(LL) 

No. of 
Parameters 

(K) 

Rho-square  

(
2ρ ) 

1
( )

LL

LL C
−  AIC 

2 2LL K− +  

BIC 

2 ln( ).LL N K− +
 

Predictive LL 
for 500 

households 
(PLL) 

1.   Time-constrained MDCEV model for destination choices -22,115 23 0.1545 44,277 44,405 -5,840 

2.   Money-constrained MDCEV model for destination choices -22,500 24 0.1398 45,048 45,182 -5,938 

3.   Time- and Money-constrained MDCEV model (as in  
  Equation 13) for destination choices 

-- -- -- -- -- -- 

4.   Time- and Money-constrained MDCEV model proposed in  
  this paper (as in Equation 19) for destination choices 

-21,893 24 0.1630 43,835 43,969 -5,816 

5.   Time-constrained MDCEV-MNL model for destination and   
  mode choices (no money constraint) 

-25,123 28 0.1383 50,302 50,459 -6,780 

6.   Money-constrained MDCEV-MNL model for destination and   
  mode choices (no time constraint) 

-25,179 29 0.1364 50,416 50,579 -6,799 

7.   Time- and Money-constrained MDCEV-MNL model for   
  destination and mode choices 

-24,695 29 0.1529 49,449 49,612 -6,730 

Note: 
LL = Log-likelihood at model convergence 
LL(C) = Log-likelihood with only constants in the model  
K = No of parameters in the model 

Rho-square (
2ρ ) = 1 { / ( )}LL LL C−  

Akaike Information Criterion (AIC) = 2 2LL K− +  

Bayesian Information Criterion (BIC) = 2 ln( ).LL N K− +  
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Table 3: Model Estimation Results 

 

Time-Constrained 

MDCEV-MNL 

Money-Constrained 

MDCEV-MNL  

Time &  Money 

Constrained 

MDCEV-MNL 

Baseline Utility Function (ψ jl) Specification Coeff t-stat Coeff t-stat Coeff t-stat 

  Variables common to all destination-mode combinations 

  (outside goods are in the base category) 

     Alternative specific constant  -12.172 -39.06   -10.821 -37.97 -7.083 -44.37 

     Householder  is retired  -0.200 -1.43 -0.230 -2.78 -0.079 -1.75 

     Leisure employment per capita at the HH MSA/non-MSA -0.041 -0.09 -0.816 -2.69 -0.340 -2.05 

  Destination-Specific Characteristics (Zj)             

     Log (Land area of the destination in sq. miles) 0.458 18.20 0.331 16.24 0.192 16.63 

     Destination is an MSA (dummy variable) 0.843 5.76 0.616 5.62 0.350 5.57 

     Leisure employment density in 100's of jobs/sq. mile 0.089 25.60 0.071 22.91 0.040 22.91 

     Length of coastline  in 1000's of miles 0.07 6.13 0.069 7.84 0.038 7.58 

     Difference in no. of freezing days (destination – origin) 0.007 8.96 0.005 8.77 0.003 9.04 

     Winter (January) temperature. 65o-75o Fahrenheit is base             

       55o-65o Fahrenheit  -0.574 -6.66 -0.270 -4.17 -0.184 -4.97 

       45o-55o Fahrenheit  -1.046 -10.30 -0.595 -7.70 -0.375 -8.50 

       35o-45o Fahrenheit  -1.484 -11.60 -0.934 -9.55 -0.560 -9.98 

       < 35 o Fahrenheit  -1.518 -10.14 -0.975 -8.62 -0.585 -9.02 

     Summer (June) temperature. 65o-75o Fahrenheit is base             

       60o to 65o Fahrenheit  -3.184 -7.28 -2.965 -8.78 -1.645 -8.66 

       75o to 80o Fahrenheit  -0.460 -6.37 -0.375 -6.87 -0.223 -7.13 

       80o to 85o Fahrenheit  -0.258 -3.50 -0.266 -4.82 -0.147 -4.65 

       85o to 90o Fahrenheit  -0.616 -7.30 -0.498 -7.76 -0.290 -7.97 

       > 90o Fahrenheit -0.292 -3.41 -0.267 -4.12 -0.151 -4.07 

     Dummy if destination in same state as HH residence 3.297 55.88 2.426 30.48 1.425 33.68 

     Dummy if destination in adjacent state to HH residence 1.997 39.21 1.452 26.73 0.853 28.46 

  Mode-Specific Variables (Xjl) 

     Alternate specific constant for air mode (auto is base) -2.223 -14.36 -1.086 -11.64 -0.696 -12.28 

     Origin is an MSA – on the air mode (auto is base) 0.394 6.70 0.233 5.86 0.127 5.63 

     Destination is an MSA – on the air mode (auto is base) 0.792 9.46 0.537 10.49 0.315 10.30 

     Round-trip travel time in days  -0.051 -15.30 -0.038 -17.10 -0.021 -15.65 

  Scale parameter σ  (t-stats are against a value of 1) 1.000  fixed 0.754 13.12 0.432 57.91 

  Dissimilarity Parameter θ  (t-stats are against a value of 1) 0.489 14.24 0.411 21.18 0.413 20.04 

Translation Function (γ j) Specification             

   Highway distance to destination (100's miles) 0.052 6.85 0.056 10.72 0.103 17.85 

   Household Size  0.352 11.94 0.42 18.81 0.599 32.48 

   Distance*Presence of  children in HH -0.026 -1.78 -0.033 -3.08 -0.075 -8.66 

   Householder is retired 0.450 1.96 0.579 3.12 0.678 4.91 

Note: Winter (summer) temperatures are monthly averages of maximum daily temperatures over a month 


